Dynamism in the Gene Expression Profile after Oocyte Activation in Mice

Yuko Jincho¹ and Tomohiro Kono¹*

¹Department of Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan

Abstract: Maternal transcripts are indispensable and play an essential role in regulation of the resumption of meiosis, nuclear reprogramming and subsequent development. In this study, we conducted interactive subtraction analysis to investigate the dynamic changes in the gene expression profiles of mouse oocytes after artificial activation. To accomplish this, we compared the cDNA libraries of freshly ovulated metaphase II (MII) oocytes and pronuclear-stage eggs at 8 h after activation, which were obtained by interactive subtraction. After constructing the cDNA libraries, we sequenced 635 subtracted clones of differentially expressed genes and the identities of 515 of these genes were determined by online BLAST analysis. The analysis revealed that genes down-regulated after activation were mainly responsible for enzyme and receptor activities, and also for DNA, chromatin, ATP, protein, and ion binding. On the other hand, genes upregulated after activation were mainly responsible for enzyme activities, ion binding, and the maintenance of cell structure. For further insight into the functions of the genes, gene network analysis was performed, and in order to validate differential gene expression, the gene expression levels were determined by using real-time quantitative PCR. The present analysis was capable of identifying the genes that changed dynamically following the resumption of meiosis, and these genes may control the developmental programs in oocytes and preimplantation embryos.

Key words: Oocytes, Activation, Gene expression profile, cDNA subtraction, Mouse

Introduction

Mouse oocytes, which are ovulated at the metaphase

Received: January 21, 2008 Accepted: March 12, 2008 *To whom correspondence should be addressed.

e-mail: tomohiro@nodai.ac.jp

II (MII) stage, resume meiosis at fertilization. Meiotic resumption is triggered by repeated Ca²⁺ oscillations that are generated by sperm derived phospholipase C (PLC) ζ , following which the fertilized eggs start to develop [1]. The oocytes also deposit various maternal genome-derived transcriptional products in their bulky cytoplasm during the growth period. These maternal transcripts are indispensable and also play an essential role in the regulation of meiotic resumption, nuclear reprogramming and the subsequent development. Once an oocyte is activated and starts developing, the maternal transcripts are selectively degraded [2-4]. Meanwhile, the synthesis of new embryonic genomederived transcripts is initiated several hours after oocyte activation [5-8]. The temporal-spatio-specific dynamism involved in the synthesis of these transcriptional products, which is precisely regulated during development in the preimplantation stage, possibly plays an important role in postimplantation development.

To obtain an insight into the temporal-spatio-specific dynamism involved in the synthesis of the transcriptional products by oocytes and embryos, numerous comprehensive gene expression analyses have been conducted using mRNA differential display [5-8], cDNA microarray [8-10], and analysis of expressed sequence tags (EST) [7, 11]. From the large cohort of maternal transcripts identified by the global gene expression analysis, several important genes that are critical for the progress of the chain of events following meiotic resumption and early development have been identified for example, cellular Moloney murine sarcoma sequence (c-mos) [12-15] and tissue plasminogen activator (Plat) [16-19] that regulate meiotic resumption and the NLR family, the pyrin domain containing 5 (NIrp5) [20-23], and zygote arrest 1 (Zar1) [24] genes that are required for development beyond the 2-cell stage. Although, considerable

information has been accumulated regarding gene expression in very early stage embryos, many factors remain to be explained. We need to gather additional transcriptome information in order to understand the complete mechanism underlying the transition from maternal to embryonic regulation of development, which has long-term effects on full-term development. Furthermore, as the next step in studying the molecular mechanisms underlying the early development, it is important to select a smaller number of genes that are candidates for important roles in development.

Accordingly, in this study, we carried out subtraction analysis using mouse eggs at the following 2 stages: freshly ovulated MII oocytes and parthenogenetic eggs at 8 h after artificial activation. Here, we used artificially activated 1-cell embryos in order to eliminate transcripts derived from paternal genomes. In order to validate the dynamic changes in gene expression, we further assessed their gene expression levels quantitatively by using the real-time polymerase chain reaction (PCR). The present analysis was capable of identifying the gene expressions which were dynamically changed following meiotic resumption, and these genes may govern the developmental programs in oocytes and preimplantation embryos in mice.

Materials and Methods

Animals

For subtraction analysis, adult female B6C3F1 (C57BL/6NCrj × C3H/HeNJcl) mice were obtained from Clea Japan Inc. (Tokyo, Japan). For gene expression analysis, adult female CD-1 mice were obtained from Charles River Laboratories Japan, Inc. (Yokohama, Japan). During the course of the experiments, the mice were provided with food and water *ad libitum*, and maintained under controlled conditions of temperature $(23^{\circ}C \pm 2^{\circ}C)$, humidity (40%–60%) and a 12 h light and 12 h dark cycle. All the mice were maintained and used in accordance with the guidelines for the care and use of laboratory animals, as specified by the Japanese Association for Laboratory Animal Science and Tokyo University of Agriculture.

Oocyte and embryo collection

Ovulated MII oocytes were collected from mature B6C3F1 female mice after superovulation induced by consecutive injections of 5 IU equine chorionic gonadotrophin (eCG) and 5 IU human chorionic gonadotrophin (hCG) which were administered 48 h apart. Cumulus cells were removed by treatment with hyaluronidase (300 IU/ml) in M2 medium. For the production of diploid pronuclear stage eggs by artificial activation, the oocytes were cultured for 4 h in a drop of Ca²⁺-free M16 medium containing 10 mM SrCl₂ (Sigma-Aldrich, MO) that was added to induce repeated intracytoplasmic Ca2+ oscillations and oocyte activation, and 5 μ g/ml cytochalasin B (Sigma-Aldrich) that was added to induce diploidy by the inhibition of second polar body extrusion. After the first 4 h of culture in the M16 medium, only those activated eggs that formed 2 female pronuclei without polar body extrusion were selected and cultured further in potassium simplex-optimised medium (KSOM) [25] at 37°C for 4 h. The MII oocytes and activated eggs were then collected in a lysis buffer at 15-16 h and 24-25 h post-hCG injection, respectively. All in vitro cultures were performed under an atmosphere of 5% CO₂, 5% O₂, and 90% N_2 .

Total RNA preparation and cDNA subtraction analysis

Total RNA was isolated using an RNeasy[®] Mini Kit (Qiagen. K.K. Tokyo, Japan) from each of the approximately 3,000 MII oocytes and 1-cell embryos. The samples were immediately lysed in 350 μ l of buffer, RNeasy lysis thioyanate (RLT), and homogenised by vortexing. After adding 1 volume of 70% ethanol, each lysate was applied to a RNeasy Mini spin column. The total RNA bound to the membrane was eluted in RNasefree water. Using this RNA, cDNA was synthesized and then amplified using the switch mechanism at the 5' end of RNA transcripts with (SMART™) PCR cDNA Synthesis Kit (Clontech/ Takara bio Inc., Shiga, Japan), according to the manufacturer's instructions. cDNA subtraction was performed using a PCR-select™ cDNA Subtraction Kit (Clontech) according to the manufacturer's instructions. The subtracted PCR products were subcloned into pGEM[®]-T Easy vector (Promega Co., WI) for screening. Next, the subtracted clones were differentially screened using PCR-Select Differential Screening Kit (Clontech). The inserted sequences of the subtracted clones were amplified by PCR using forward (TCGAGCGGCCGGCCGGGCAGGT) and reverse (AGCGTGGTCGCGGCCGAGGT) polylinker primers, and the PCR products were immobilized on nylon membranes in triplicate.

Hybridization probes were prepared by labeling the forward- and reverse-subtracted cDNA (20–90 μ g) and forward- and reverse-unsubtracted cDNA (50–100 μ g) libraries with digoxigenin (DIG; Roche Molecular Biochemicals, Basel, Switzerland). Subsequently, the PCR products immobilized on the nylon membranes were hybridized with 100 ng of each probe at 72°C for 60

min; the probes were prepared in ExpressHyb Hybridization Solution (Clontech). After rinsing, the hybridization signals of the membrane were read using a FujiFilm LAS-1000 Plus camera (Fujifilm Co., Tokyo, Japan), and the signal intensity was computed using FujiFilm ArrayGauge software (Fujifilm). The cDNA clones that hybridized with the forward-subtracted and forward-unsubtracted probes but not to the reversesubtracted and reverse-unsubtracted probes were determined as specific to the MII oocytes and activated eggs. The results of the differential screening revealed that certain cDNA clones demonstrated a 2-fold increase in gene expression in the MII oocytes compared with the activated eggs. These genes were classified as MII oocyte-specific genes. The cDNA clones from the MII oocytes that exhibited respective signal intensities 2-fold weaker than those of the activated eggs were classified as activated egg-specific genes.

DNA sequencing analysis and BLAST search

DNA sequencing was performed using an automated ABI PRISM3130 Genetic Analyzer (ABI, CA). Sequencing reactions were carried out with the BigDye Terminator v3.1 Cycle Sequencing Kit (ABI) using forward and reverse primers. The sequences obtained were compared against those in the Mouse Genome Informatics (MGI; http://www.informatics.jax.org/) database by using the online basic local alignment search tool (BLAST) analysis (www.ncbi.nlm.niho.gov/ BLAST).

Quantitative gene expression analysis

cDNA was synthesized from ovulated MII oocytes and artificially activated eggs by using a Cells-to-cDNA™ II kit (Ambion, Inc., TX). Single blastocysts were placed in 13 μ l of the lysis buffer and then treated with DNase. The cDNAs were synthesized in 20 μ l of reaction solution by using a SuperScript RNase H-reverse transcriptase kit (Invitrogen, Co., CA). Further, this synthesized cDNA was employed for the quantitative analysis of gene expression using RT-PCR, which was carried out using a ready-to-use reaction mixture kit (LightCycler[™] FirstStart DNA Master SYBR Green I; Roche Molecular Biochemicals). The primer sequences used for the PCR reaction, PCR conditions, and product sizes are listed in Table 1. The glyceraldehydes-3phosphate dehydrogenase (*Gapdh*) gene was used as the loading control. The amplification protocol was as follows: DNA polymerase activation at 95°C for 10 min and 45 cycles of amplification with denaturation at 95°C for 15 s, annealing for 10 s at the optimum temperature

for each gene (see Table 1), and extension at 72°C for 10 s. On completion of these amplification cycles, a melting curve analysis was performed to verify specific amplification. The relative expression levels of each gene tested were obtained from the standard curve that was generated using a pooled cDNA mixture extracted from E12.5 foetuses.

Statistical analysis

The gene expression levels were statistically analyzed using Student's *t*-test. Differences were considered significant at p<0.05 and greatly significant at p<0.01. In order to elucidate the functional network of the genes that were differentially expressed in the MII oocytes and those that were differentially expressed in the activated eggs at 8 h after oocyte activation. The gene lists were integrated into the Ingenuity Pathway Analysis (IPA) database (Ingenuity, CA).

Results and Discussion

Identification of differentially expressed genes

To identify genes that were differentially expressed following oocyte activation, we compared the cDNA libraries of freshly ovulated MII oocytes and activated eggs, obtained by interactive subtraction technology (Table 2). Total RNA was isolated from each of the approximately 3,000 MII oocytes and the pronuclear stage eggs at 8 h after activation, and the cDNA libraries were established for interactive subtraction analysis. cDNA subtraction was performed using the PCR-Select Subtraction Kit (Clontech), which combines the normalization and equalization of cDNA with the subtraction process. From the subtracted cDNA libraries, 2,304 cDNA clones were subcloned, and the forward and reverse sequences were subjected to probe hybridization in order to identify the differentially expressed genes (Table 2). We sequenced 635 subtracted clones that demonstrated approximately 2-fold or greater difference in the intensity of the hybridization signals between the subtracted forward and the reverse probes, and the identities of 515 of these genes were determined by online BLAST analysis. This set comprised 217 known genes (121 and 96 genes were strongly expressed in MII oocytes and activated eggs, respectively) and 181 novel or uncharacterized genes (29 and 152 genes strongly expressed in MII oocytes and activated eggs, respectively). The number of known genes represents the total number of genes remaining after the overlapping ones were excluded. The differentially expressed known genes, which were obtained by hybridization analysis

Gene	Accession No.	Primer sequence (5'-3')	Mg2+ conc. (mM)	Annealing Tm (°C)	Amplified length (bp)
Lbr	AY148159	TTGGCCGAGAGTTAAACCCGCGACTTG CCAGAGGGCGTCCACCACATATAAGGG	3	62	200
Gdpd1	BC016541	TGCATGGAGTCACATCGGAA GTGACAATGCTGTCATGCCT	4	62	323
Ints9	BC055700	ATTGGGCAGTAGATGCACTT TTACCTCCCAGAACCACCTT	4	65	27
II1rap	BC021159	CGGTGCATCCATTACCTTTC GAACTGGTTATTCCCTGCAA	4	60	286
Xpr	AK033421	GAGCCAGTTTGGTCTTTCTCC CCAGAGCATCTGAATACACGTT	3	60	185
Gdf9	BC052667	CCTTAGAGTGCCTGGGCAGAGA CTTGGTTTATGGCAACGACCAGTGAG	3	63	158
Lccr17	BC030317	AGTCTATGTGTTGCCTGACT TCTGTCAGCACCTTGATCTG	4	60	222
Slc7a1	AY766236	CAACACAGAGCTTAGCAAGT ACATTCTTCTGCAAGCATCA	5	60	144
Ggta1	BC006810	AGATAATGAAGCCAAAGGGA TGAGCCTGTAATATGTGAGA	4	60	256
Dkc1	BC099966	CTAGGGCCCTAGAAACTCTG GTACGCATAGTGTCCGAATG	4	60	186
Bub1b	BC031577	CTCTGCAGAGCTTCTTGGTG TGACTAATGACGGGGGCAGAA	3	60	245
Slc23a2	BC050823	AACAAAGCTTACTAGTGGTT AAGTATTTGTGTGGGCCAAGG	5	60	216
Dcpla	BC064319	TAGGTGTGCCACGAGGACACAG ATGCCATTGTAACCCTGATAATGCAACA	3	62	184
Plat	BC011256	CTGAGTGCATCAACTGGAATAGCAGTGT TTTTCCCTTAGGGCAAGCTGGTGT	3	60	200
Spry4	BC057005	CTCCCAGGCTTCTTAGAAAGAG AAAGATAGAAGACAAACCCCTGC	4	55	175
Kpna2	U34229	ATGATGCTACTTCTCCGCTACAG GACTACAATCAGTTTTGCCCAAG	5	60	231
Exocl	BC087543	GCAAGTCTCTATGAAATGGATGG CTTCAGTGACCTGAGGGAACAT	3	55	152
Gapdh	-	GTCGTGGAGTCTACTGGTGTC GAGCCCTTCCACAATGCCAAA	2	61	240

Table 1. Primers and conditions used for real-time PCR

with forward subtracted and unsubtracted probes and with reverse subtracted and unsubtracted probes, were classified into 3 groups: Group A genes were detected by both subtracted and unsubtracted probes; Group B genes were detected by only subtracted probes; Group C genes were detected by only unsubtracted probes.

To understand the functions of the genes with dynamically changed expressions after oocyte

activation, we performed a cluster analysis for Group A genes (21 and 27 genes from the MII oocytes [Table 3] and activated eggs [Table 4], respectively) by using the MGI database (http://www.informatics.jax.org/). The results revealed that the genes down-regulated after activation were mainly responsible for enzyme and receptor activities and also for DNA, chromatin, ATP, protein, and ion binding (Table 3). On the other hand,

154 J. Mamm. Ova Res. Vol. 25, 2008

	Number of cDNA clones			Number of genes (Known gene) ¹		
Stage	Analyzed	Differentially expressed	Sequenced and BLAST searched	Class A	Class B	Class C
Mll oocytes	1,152	247	231	28 (21)	47 (38)	75 (62)
activated eggs	1,152	388	284	125 (27)	60 (38)	63 (31)
Total	2,304	635	515	153 (48)	107 (76)	138 (93)

Table 2. Summary of subtraction analysis using Mll oocytes and activated eggs

¹The numbers of the known genes do not contain overlaps.

 Table 3. Genes specifically expressed in Mll oocytes

Accession No.	Symbol name	Gene name	Gene ontology (GO) function
BC011256	Plat	plasminogen activator, tissue	hydrolase activity, peptidase activity
BC094587	Glce	glucuronyl C5-epimerase	isomerase activity, racemase and epimerase activity, acting on carbohydrates and derivatives
BC031577	Bub1b	budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae)	ATP binding, kinase activity
X60672	Rdx	radixin	actin binding, binding
BC016541	Gdpd1	glycerophosphodiester phosphodiesterase domain containing 1	glycerophosphodiester phosphodiesterase activity, hydrolase activity
AY148159	Lbr	lamin B receptor	DNA binding, nucleic acid binding
AY007195	Hlfoo	H1 histone family, member O, oocyte-specific	DNA binding
BC021159	Il1rap	interleukin 1 receptor accessory protein	interleukin-1 receptor activity, protein binding
BC052667	Gdf9	growth differentiation factor 9	cytokine activity, growth factor activity
AK033037	Astl	astacin-like metalloendopeptidase	astacin activity, hydrolase activity
BC055700	Ints9	integrator complex subunit 9	unknown
AK033421	Xprl	xenotropic and polytropic retrovirus receptor	receptor activity
AB021132	Rapgef4	Rap guanine nucleotide exchange factor (GEF) 4	cAMP binding, cAMP-dependent protein kinase regulator activity
BC050823	Slc23a2	solute carrier family 23 (nucleobase transporters), member 2	L-ascorbate:sodium symporter activity, sodium ion binding
AY766236	Slc7a11	solute carrier family 7 (cationic amino acid transporter, y+ system), member 11	amino acid transmembrane transporter activity
BC030317	Lrrc17	leucine rich repeat containing 17	protein binding
AY280964.	Kcnn2	potassium intermediate/small conductance calcium- activated channel, subfamily N, member 2	calcium-activated potassium channel activity, calmodulin binding
BC064319	Dcpla	decapping enzyme	hydrolase activity, transcription factor binding
BX908741	Depdc7	DEP domain containing 7	unknown
BC099966	Dkc1	dyskeratosis congenita 1, dyskerin homolog (human)	isomerase activity, pseudouridylate synthase activity
BC056440	Asb4	ankyrin repeat and SOCS box-containing protein 4	unknown

the genes that were up-regulated after activation were mainly responsible for enzyme activities, ion binding, and the maintenance of cell structure (Table 4). From the subtraction analysis we established 2 cDNA libraries of genes specifically expressed in the MII oocytes and activated eggs. Since we used

AF033115SivalSIVA1, apoptosis-inducing factorCD27 receptor binding, metal ion bindingAI250192umknownMus musculus partial mRNA for muscle protein684UnknownAI13289K/JPkinesin family member 9ATP binding, microtubule motor activityBC015295Eps1511epidermal growth factor receptor pathway substrate 15-like 1calcium ion binding, protein bindingAK153747mt-Nd4NADH dehydrogenase 4, mitochondrialNADH dehydrogenase (ubiquinone) activity, oxidoreductase activityBC059028Asx11additional sex combs like 1 (Drosophila)metal ion binding, protein kinase bindingBC051943Elp2elongation protein 2 homolog (S. cerevisiae)protein binding, protein kinase bindingBC014287Pigqphosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activity, transferase activityBC087032Taxthymocyte selection-associated HMG box geneDNA bindingBC087343Exoc1exocyst complex, subuni zeta 1protein bindingBC087343Exoc1exocyst complex, subuni zeta 1protein binding, protein transporter activityAL70227Atp10bATPase, class V, type 10BumknownU34229Kpma2karyopherin (importin) alpha 2binding, nucleic activity, cara farsaU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingU96760Vbp1von Hippel-Lindau binding protein 2unknownU34229Kpma2karyopherin (importin) alpha 2binding, un	Accession No.	Symbol name	Gene name	Gene ontology (GO) function
AJ250192unknownMus musculus partial mRNA for muscle protein684UnknownAJ132889 <i>Klf</i> 9kinesin family member 9ATP binding, microtubule motor activityBC015259 <i>Eps1511</i> epidermal growth factor receptor pathway substrate 15-like 1calcium ion binding, protein bindingAK153747 <i>mt-Nd4</i> NADH dehydrogenase 4, mitochondrialNADH dehydrogenase (ubiquinone) activity, oxidordeutase activity)BC059028 <i>Axt1</i> additional sex combs like 1 (Drosophila)metal ion binding, protein bindingBC051943 <i>Elp2</i> elongation protein 2 homolog (S. cerevisiae)protein binding, protein kinase bindingBC014287 <i>Pigq</i> phosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activityCT010241 <i>Nono</i> non-POU-domain-containing, octamer binding proteinDNA binding, nuclei acid bindingBC057005 <i>Spry4</i> sprouty homolog 4 (Drosophila)protein bindingBC080732 <i>Tox</i> thymocyte selection-associated HMG box geneDNA bindingAL669931 <i>Sic2</i> stannicoalcrin 2hormone activityAL772227 <i>Apt10b</i> ATPase, class V, type 10BunknownU34229 <i>Kpna2</i> karyopherin (importin) alpha 2binding, unoleided protein bindingBC094904 <i>Clec12a</i> C-type lectin domain family 12, member aprotein binding, unoleided protein bindingBC094904 <i>Clec12a</i> C-type lectin domain family 12, member aprotein phosphatase activity, catalytic activityBC094904 <i>Clec12a</i> CDK5 regulatory	AF033115	Sival	SIVA1, apoptosis-inducing factor	CD27 receptor binding, metal ion binding
AJ132889Ktf9kinesin family member 9ATP binding, microtubule motor activityBC015259Eps1511epidermal growth factor receptor pathway substrate 15-like 1calcium ion binding, protein bindingAK153747mt-Nd4NADH debydrogenase 4, mitochondrialNADH dehydrogenase (ubiquinone) activity, oxidoreductase activityBC059028Asx11additional sex combs like 1 (Drosophila)metal ion binding, protein bindingBC051943Elp2elongation protein 2 homolog (S. cerevisiae)protein binding, notein kinase bindingBC014287Pigqphosphatidylinositol Jgucan, class Qphosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activityCT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC080732Taxthymocyte selection-associated HMG box geneDNA bindingBC087343Exoc1exocyst complex component 1unknownBC08331Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Ap10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, notein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activity, lass activityAX24535Echclc2enoly Coenzyme A hydratase domain co	AJ250192	unknown	Mus musculus partial mRNA for muscle protein684	Unknown
BC015259Eps1511epidermal growth factor receptor pathway substrate 15-like 1calcium ion binding, protein bindingAK153747mt-Nd4NADH dehydrogenase 4, mitochondrialNADH dehydrogenase (ubiquinone) activity, oxidoreductase activityBC059028Asxd1additional sex combs like 1 (Drosophila)metal ion binding, protein bindingBC051943Elp2elongation protein 2 homolog (S. cerevisae)protein binding, protein kinase bindingBC014287Pigqphosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activityCT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC086731Stc2stanniocalcin 2hormone activityBC08732Toxthymocyte selection-associated HMG box geneDNA binding, protein transporter activityBC087334Exoc1exocyst complex, subunit zeta 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, unfolded protein bindingU34229Kpna2karyopherin (importin) alpha 2binding, unfolded protein bindingU34229Kpna2karyopherin (importin) 1protein binding, unfolded protein bindingU34229Kpna2c-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingNA7363102Fhitfragile histidime triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityRX293563Echdc2<	AJ132889	Kif9	kinesin family member 9	ATP binding, microtubule motor activity
AK153747mt-Nd4NADH dehydrogenase 4, mitochondrialNADH dehydrogenase (ubiquinone) activity, oxidoreductase activityBC059028Asxl1additional sex combs like 1 (Drosophila)metal ion binding, protein bindingBC051943Elp2elongation protein 2 homolog (S. cerevisiae)protein binding, protein kinase bindingBC0514287Pigqphosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activity, transferase activity, transferase activity, transferase activity, transferase activityCT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC080732Toxthymocyte selection-associated HMG box geneDNA binding, nornone activityBC087543Exoc1exocyst complex component 1unknownBC085314Copz1ceatomer protein complex, subunit zeta 1protein binding, unfolded protein bindingU34229Kpna2karyopherin (importin) alpha 2binding, unfolded protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC039024Clec12aC-type lectin domain family 12, member a trasit (Vity, catalytic activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activityAL845502Cdk5rap2CDK5 regulatory subunit associat	BC015259	Eps1511	epidermal growth factor receptor pathway substrate 15-like 1	calcium ion binding, protein binding
BC059028Ast/Iadditional sex combs like 1 (Drosophila)metal ion binding, protein bindingBC051943Elp2elongation protein 2 homolog (S. cerevisiae)protein binding, protein kinase bindingBC014287Piggphosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl-transferase activity, transferase activityCT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC058732Toxthymocyte selection-associated HMG box geneDNA bindingAL669931Stc2stannicoalcin 2homone activityBC087533Exoc/exocyst complex, subunit zeta 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1unknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU34229Kpna2karyopherin (importin) alpha 2binding, unfolded protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingRC094904Clec12aC-type lectin domain family 12, member aprotein binding, ungolded protein bindingRX93631Echdc2encyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activity, catalytic activityRX936312Chkirfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityRX93631Echdc2encyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activity, lyase activi	AK153747	mt-Nd4	NADH dehydrogenase 4, mitochondrial	NADH dehydrogenase (ubiquinone) activity, oxidoreductase activity
BC051943Elp2elongation protein 2 homolog (S. cerevisiae)protein binding, protein kinase bindingBC014287Pigqphosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl-transferase activityCT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC087022Toxthymocyte selection-associated HMG box geneDNA bindingAL669931Stc2stanniocalcin 2hormone activityBC087543Exoc1exocyst complex component 1unknownBC085144Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, lyase activityAL66908NcdnneurochondrinunknownAL606908NcdnneurochondrinunknownAL606908NcdnneurochondrinunknownAL606908NcdnneurochondrinunknownAL606908NcdnneurochondrinunknownAL606908Ncdnneurochondrinunknown	BC059028	Asxl1	additional sex combs like 1 (Drosophila)	metal ion binding, protein binding
BC014287 <i>Pigq</i> phosphatidylinositol glycan, class Qphosphatidylinositol N-acetylglucosaminyl-transferase activity, transferase activityCT010241 <i>Nono</i> non-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005 <i>Spry4</i> sprouty homolog 4 (Drosophila)protein bindingBC080732 <i>Tax</i> thymocyte selection-associated HMG box geneDNA bindingAL669931 <i>Stc2</i> stannicocalcin 2hormone activityBC087543 <i>Exoc1</i> exocyst complex component 1unknownBC085314 <i>Copz1</i> coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL72227 <i>Atp10b</i> ATPase, class V, type 10BunknownU34229 <i>Kpna2</i> karyopherin (importin) alpha 2binding, protein bindingU96760 <i>Vbp1</i> von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904 <i>Clec12a</i> C-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102 <i>Fhit</i> fragile histidine triad genebis (5*adenosyl)-triphosphatase activity, catalytic activityBX293563 <i>Echdc2</i> enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL60908 <i>Ncdn</i> neurochondrinunknownAL60908 <i>Ncdn</i> neurochondrinunknownAL627349 <i>Dock7</i> dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487 <i>Hexdc</i> hexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydr	BC051943	Elp2	elongation protein 2 homolog (S. cerevisiae)	protein binding, protein kinase binding
CT010241Nononon-POU-domain-containing, octamer binding proteinDNA binding, nucleic acid bindingBC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC080732Toxthymocyte selection-associated HMG box geneDNA bindingAL669931Stc2stanniocalcin 2hormone activityBC087543Exoc1exocyst complex component 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760V'bp1von Hippel-Lindau binding protein 1protein binding, sugar bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragle histidine triad genecatalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL669088NcdnneurochondrinunknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activi	BC014287	Pigq	phosphatidylinositol glycan, class Q	phosphatidylinositol N-acetylglucosaminyl- transferase activity, transferase activity
BC057005Spry4sprouty homolog 4 (Drosophila)protein bindingBC080732Toxthymocyte selection-associated HMG box geneDNA bindingAL669931Stc2stanniocalcin 2hormone activityBC087543Exoc1exocyst complex component 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC083503Echc2C-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL606908NcdnneurochondrinunknownAL607349Dock7dedicator of cytokinesis 7GTP binding, GTP ase bindingBC056487Hexdehexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL647349Dock1dedicator of cytokinesis 1guayl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding.	CT010241	Nono	non-POU-domain-containing, octamer binding protein	DNA binding, nucleic acid binding
BC080732Toxthymocyte selection-associated HMG box geneDNA bindingAL669931Stc2stanniccalcin 2hormone activityBC087543Exoc1exocyst complex component 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC089404Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL66908NcdnneurochondrinunknownAL605908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	BC057005	Spry4	sprouty homolog 4 (Drosophila)	protein binding
AL669931Stc2stanniocalcin 2hormone activityBC087543Exoc1exocyst complex component 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL72227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL6606908NcdnneurochondrinunknownAL6057349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAL732450Phka2phosphorylase kinase alpha 2calmodulin binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding.	BC080732	Tox	thymocyte selection-associated HMG box gene	DNA binding
BC087543Exoc1exocyst complex component 1unknownBC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL660908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL84204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL669931	Stc2	stanniocalcin 2	hormone activity
BC085314Copz1coatomer protein complex, subunit zeta 1protein binding, protein transporter activityAL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein protein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	BC087543	Exoc1	exocyst complex component 1	unknown
AL772227Atp10bATPase, class V, type 10BunknownU34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	BC085314	Copz1	coatomer protein complex, subunit zeta 1	protein binding, protein transporter activity
U34229Kpna2karyopherin (importin) alpha 2binding, protein bindingU96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL772227	Atp10b	ATPase, class V, type 10B	unknown
U96760Vbp1von Hippel-Lindau binding protein 1protein binding, unfolded protein bindingBC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	U34229	Kpna2	karyopherin (importin) alpha 2	binding, protein binding
BC094904Clec12aC-type lectin domain family 12, member aprotein phosphatase binding, sugar bindingAY363102Fhitfragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL6027349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	U96760	Vbp1	von Hippel-Lindau binding protein 1	protein binding, unfolded protein binding
AY363102 <i>Fhit</i> fragile histidine triad genebis (5'-adenosyl)-triphosphatase activity, catalytic activityBX293563 <i>Echdc2</i> enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502 <i>Cdk5rap2</i> CDK5 regulatory subunit associated protein 2unknownAL606908 <i>Ncdn</i> neurochondrinunknownAL627349 <i>Dock7</i> dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487 <i>Hexdc</i> hexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204 <i>Mal</i> myelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515 <i>Dock1</i> dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450 <i>Phka2</i> phosphorylase kinase alpha 2calmodulin binding, kinase activity	BC094904	Clec12a	C-type lectin domain family 12, member a	protein phosphatase binding, sugar binding
BX293563Echdc2enoyl Coenzyme A hydratase domain containing 2catalytic activity, lyase activityAL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AY363102	Fhit	fragile histidine triad gene	bis (5'-adenosyl)-triphosphatase activity, catalytic activity
AL845502Cdk5rap2CDK5 regulatory subunit associated protein 2unknownAL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	BX293563	Echdc2	enoyl Coenzyme A hydratase domain containing 2	catalytic activity, lyase activity
AL606908NcdnneurochondrinunknownAL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL845502	Cdk5rap2	CDK5 regulatory subunit associated protein 2	unknown
AL627349Dock7dedicator of cytokinesis 7GTP binding, GTPase bindingBC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL606908	Ncdn	neurochondrin	unknown
BC056487Hexdchexosaminidase (glycosyl hydrolase family 20, catalytic domain) containinghydrolase activityAL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL627349	Dock7	dedicator of cytokinesis 7	GTP binding, GTPase binding
AL844204Malmyelin and lymphocyte protein, T-cell differentiation proteinunknownAC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	BC056487	Hexdc	hexosaminidase (glycosyl hydrolase family 20, catalytic domain) containing	hydrolase activity
AC136515Dock1dedicator of cytokinesis 1guanyl-nucleotide exchange factor activity, protein binding.AL732450Phka2phosphorylase kinase alpha 2calmodulin binding, kinase activity	AL844204	Mal	myelin and lymphocyte protein, T-cell differentiation protein	unknown
AL732450 Phka2 phosphorylase kinase alpha 2 calmodulin binding, kinase activity	AC136515	Dockl	dedicator of cytokinesis 1	guanyl-nucleotide exchange factor activity, protein binding.
	AL732450	Phka2	phosphorylase kinase alpha 2	calmodulin binding, kinase activity

Table 4. Genes up-regulated after oocyte activation

parthenogenetically activated eggs, all cDNA clones represented maternal genome-derived transcripts. The cDNA library for MII oocytes comprised well-known genes that are expressed at high levels in MII oocytes: linker histone (*H1oo*) [4, 26–29], growth differentiation factor 9 (*Gdf9*) [4, 29], and *Plat* [4, 9]. Similarly, the cDNA library for activated eggs comprised genes that

are known to be activated after fertilization: sprouty 4 (*Spry4*) [9, 29, 30] and karyopherin-alpha2 (*Kpna2*) [10]. We believe that the present interactive subtraction analysis successfully detected a substantial number of genes that are differentially expressed at the abovementioned stages.

Fig. 1. Quantitative analysis of the gene expression in Mll oocytes and activated eggs. The genes were selected from the list of genes differentially expressed in Mll oocytes and activated eggs, as determined by cDNA subtraction analysis. The relative mRNA expression levels were calculated by determining the intensity of gene expression using *Gapdh* as internal control. The ordinate shows the mean of the relatively expressed levels. The values denote the mean \pm S.E. obtained from 3 independent experiments. Asterisks denote significant difference between the oocytes and activated eggs (*p<0.05, **p<0.01).

Validation of subtraction data by Q-PCR

We validated our results of gene expression levels by using real-time quantitative PCR. From Group A, we examined 14 and 3 genes that were identified as having been specifically expressed in the MII oocytes and activated eggs, respectively (Fig. 1). The quantitative PCR analysis revealed that out of the 14 genes tested, 3 MII oocytes-specific genes, including Plat, glycerophohodiester phosphodiesterase domain containing 1 (Gdpd1) and integrator complex subunit 9 (Ints9), were expressed at levels 5-fold higher than in the activated eggs. The differences in the expression levels were greatly significant at p < 0.01levels. Moreover, 6 genes, lamin B-receptor (Lbr), interleukin 1 receptor accessory protein (*ll1rap*), xenotropic and polytropic retrovirus receptor 1 (Xpr1), Gdf9, solute carrier family 7 member 1 (Slc7a1) and solute carrier family 23 member 2 (S/c23a2), were expressed at significantly (p<0.05) higher levels in the activated eggs. In contrast, 3 genes whose expressions were elevated after oocyte activation, including sprouty homolog 4 (Spry4), karyopherin (importin) alpha 2 (Kpna2) and exocyst complex component 1 (Exoc1) were expressed at levels of 2-fold or more in the activated eggs, however, significant differences were not seen. Gapdh gene, which was tested as the internal control, demonstrated almost equal expression levels in both the MII oocytes and activated eggs.

The present data is representative of genes expressed specifically in the MII oocytes and activated eggs, because the results of real-time PCR correlated well with those of the subtraction analysis. Accordingly, we believe that the present interactive subtraction analysis successfully detected a substantial number of differentially expressed genes, and identified a small number of candidate genes that may significantly contribute to future studies into the molecular mechanisms in oocytes.

Networks

In order to obtain further insight into the function of the genes classified into Group A, gene networks were constructed using the IPA database. The first 5 functional networks in each case are shown in Fig. 2a, b and Tables 5 and 6.

Gene networks constructed using genes expressed specifically in the MII oocytes were as follows (Fig. 2a, Table 5). Network 1 (*Plat*): cellular movement, cardiovascular system development and function, and organismal development. Network 2 (*Gdf9*): DNA replication, DNA recombination, and DNA repair, cell cycle regulation, and cellular assembly and organization. Network 3 (solute carriers family 23 member 1 [*Slc23a*]): lipid metabolism, small molecule biochemistry, and cell death. Network 4 (*Slc7a1*, dyskeratosis congenital 1 [*Dkc1*]): DNA replication, DNA recombination, DNA repair; cell cycle regulation, and connective tissue development and function. Network 5 (*Plat*): cellular assembly and organization, anticancer effect, and cell cycle regulation.

The networks constructed using genes with rapidly enhanced expressions after oocyte activation were as follows (Fig. 2b, Table 6). Network 1 (Kpna2): cellular movement, cardiovascular system development and function, and organismal development. Network 2 (Exoc1): DNA replication, DNA recombination, DNA repair, cell cycle regulation, and cellular assembly and organization. Network 3 (additional sexcombs-like 1 protein [Asx/1], non-POU-domain-containing, octomer binding protein [Nono]): lipid metabolism, small molecule biochemistry, and cell death. Network 4 (aldoketo reductase family 1, member B1 [Akrb1]): DNA replication, DNA recombination, DNA repair, cell cycle regulation, and connective tissue development and function. Network 5 (epidermal growth factor receptor pathway substrate 15-like 1 [Eps15/1], stanniocalcin 2 [Sct2]): cellular assembly and organization, anticancer effect, and cell cycle regulation.

Genes expressed specifically in the MII oocytes were primarily involved in the cell cycle and cancer. Furthermore, the networks generated from these genes also suggest that the genes highly expressed in MII oocytes are involved in the cell cycle and are responsible for cell proliferation. In addition to the cell cycle and cancer, the genes with significantly enhanced expressions after activation were involved in cell proliferation and cell adhesion. This result is fairly understandable because it is expected that the genes responsible for the cell cycle and development would be activated following the resumption of meiosis and subsequent development.

Although cDNA microarray analysis is a robust technique for the identification of genes that are specifically expressed in particular cells and tissues, it is complementary to subtractive hybridization analysis [31]. Recently, a microarray study presented several novel findings regarding gene expression profiles in early-stage embryos [32]. For example, fertilization leads to extensive changes in the transcript profiles, which are much greater than previously recognized, and genome activation during the 2-cell stage may be selective on a qualitative scale with genes involved in transcription and RNA processing. Cui et al. (2007) [8] reported a comparison of gene expression profiles of germinal vesicle (GV)- and MII-stage oocytes. Their results indicate that the genes specifically up-regulated in MII oocytes are more likely to be involved in DNA replication, amino acid metabolism, and the expression

Mll oocytes. The network is displayed graphically as nodes (genes or gene products) and edges (the biological relationships between nodes, including functional or physical interactions, e.g., E, expression; B, binding). The shape of the objects (e.g., circle, diamond) represents whether the protein is a structural protein, transcription factor, etc. The family classes represented by these shapes are listed in Tables 3 and 4. The continuous and dashed lines indicate direct and indirect interactions, respectively, between the gene products.

Network ID	Genes in network	Categories of top functions	
1	Akt, ATF2, CCNB1, CDH1, Ck2, DCLRE1A, EIF2B1, FGF3, FRAP1, GNA13, GNB2L1, Hsp70, HSP90AA1, HSP90AB1, IL1RAP, Jnk, LAMA3, MAP4K5, Mapk, MDK, MIA, MOS, NCL, NOLC1, MAPK14, Pdgf Ab, PDGF BB, PLAT, Ras, RFPL4A, SERPINF1, SIN3A, SNCG, TP53BP1	Cellular Movement, Cardiovascular System Development and Function, Organismal Development	
2	AKT1, AKT3, amino acids, APPL1, ATP7A, BMP15, CBX5, CYP17A1, DCP1A, DLG4, DLG4P2, GAPVD1, GDF9, GGTA1, HSPA4L, IGFBP5, INHA, KIF1C, LBR, LMO7, LRP2, MAG12, MATR3, MOS, MYOD1, NP, NPC1, palmitic acid, PLA2G4C, progesterone, PTGER2, PTPN21, SRPK1, STAR, YWHAG	Cancer, Lipid Metabolism, Molecular Transport	
3	APC, BPGM, CD44, CDC2, CDKN2A, CENPE, CENPF , CNOT7 , CNOT6L, DDX3X , EDN1, Erm, FBXL5 , GNA13, IARS (includes EG:3376), IL4, IL13, JAG1 , LOX, MDM4 , MFAP2, MME, MSN, MYC, PDGF-CC, PDIA6 , RDX , SLC23A2 , SLC43A3, SMOC2, SPN, SUMO2 , TGFB1, THY1, TOB2	Cancer, Cellular Growth and Proliferation, Tumor Morphology	
4	AIFM1, AKT3, beta-estradiol, BUB3, BUB1B, CDC20, CDKN1A, CENPE, CLU, DDIT4, DKC1, hydrogen peroxide, IGFBP2, KCNN2, LRRC17, MAD2L1, MCC, MLLT10, NCAPD3, PAX3, PLK4, PRC1, PTPN2, RAP1A, SLC3A2, SLC7A11, SLC9A1, SMARCB1, SMC4, SNCG, SPAG5, SS18, TERC (includes EG:7012), TERT, TXNIP	Cancer, Cellular Growth and Proliferation, Cell Death	
5	ACADS, APC, CRH, CTGF, EIF4EBP2, FADD, FGF3, HNRPF, IGFBP2, IGFBP3, INHBA, INS1, LNPEP, LOX, MAPK3, MBD4, MEIS2, MIF, NFRKB, NIF3L1, NUP98, NUP107, NUP133, NUP160, PHIP, PLAT, RAPGEF4, retinoic acid, SERPINB2, SERPINE2, SMAD2, SYTL4, TNF, TNFAIP6, TPD52L2	Cancer, Cellular Growth and Proliferation, Cell Cycle	

 Table 5. Top 5 networks generated from the IPA for genes specifically expressed in MII oocytes

The genes with bold letters were in the cDNA library obtained by the subtraction analysis.

Network ID	Genes in network	Categories of top functions
1	AURKB, CENPF, CREBBP , CYP2J2, ELK3, ELP2, ELP3, ELP4, ELP5, ELP6, ETV5, Histone h3, HSPA8 , IKBKAP, KPNA2 , Mapk, MERTK , MYST2 , NUP214 , NXF1 , PDGF BB, PI3K, PIK3CB, PIK3CD, PIK3CG, PIK3R5 , PLC gamma, PTHLH, QARS , SH2B2, SH3BP2, SMOC2, SPRY4 , VAV3	Immune Response, Cell Signaling, Cell-To-Cell Signaling and Interaction
2	ADK, BCAT1, COPS4, DST, DYNC111, EIF4ENIF1, EXOC1, EXOC2, EXOC3, EXOC4, EXOC5, EXOC7, EXOC8, F2, GTP, HNRPK, ICOSLG, IFNG, IL15, MYC, ND1, ND2, ND4, ND5, ND6, ND4L, PARD6G, PLEK, PPP1R12A, PRDX2, PRPF8, SMAD3, SP110, VBP1, YWHAZ	Vitamin and Mineral Metabolism, Cell-To-Cell Signaling and Interaction, Hematological System Development and Function
3	ABL2, ACO1, ACO2, ADSS, ASXL1, BID, CD27, CENPF, CSF2, CYP19A1, dihydrotestosterone, EFNA1, ELAVL1, EPHA2, FGF7, FTL1, GMPS, hydrogen peroxide, MYST1, NACA, NONO, PDCD4, PTP4A3, RB1, retinoic acid, RPA1, SFPQ, SGK, SIVA1, SMARCA2, TMEM97, TOP1, TP53, TP53BP1, TUBA4A	Cell Cycle, Cancer, Cellular Growth and Proliferation
4	AKR1B1, BCAR1, BCL2, BCLAF1, BGLAP, BID, BRCA1, BRCC3, CCNB1, CDC2, cholecalciferol, CNIH, COL2A1, E2f, Fgf, FGF2, FOSL2, GATA4, GL12, IL11, JARID2, KBTBD8, NFYC, NKX2-5, NPY, NUSAP1, ODC1, PAX8, POU3F4, PTHLH, SHH, SOX9, TGFB1, WDR76, ZFP57	Embryonic Development, Tissue Development, Cancer
5	AKAP5, beta-estradiol, BGLAP, BRAF, CNTN1, CRK, DLG1, DLG3, DLG4, DLGAP2, EFNA1, ELOVL3 , EPN2 , EPS15, EPS15L1 , ERC2, FOSL2, GRASP, MAG12, NARF , norepinephrine, NPFFR2, NPY, OPRM1, PTP4A1, RAB6A, RIMS1, SMARCA4, SNAP25, SPRY2, STC2 , STON2, STX1A, STXBP6 (includes EG:29091), UNC13A	Cancer, Endocrine System Disorders, Molecular Transport

The genes with bold letters were included in the cDNA library obtained by the subtraction analysis.

of G protein-coupled receptors and signalling molecules. It has also been reported that the transcripts encoding components of signalling pathways essential for maintaining the unique characteristics of the MIIarrested oocyte, such as those involved in protein kinase pathways, are the most prominent among the stable transcripts [33].

The present results also provide a comprehensive profile of the dynamism in gene expression following oocyte activation in mice. Further understanding of the biological role of these genes would increase our knowledge regarding the meiotic cell cycle, maternal genome activation, chromatin remodeling, pluripotency, early cleavage, and epigenetic reprogramming. We believe that the approach we have described in which differential gene expression can be identified will lead to a better understanding of the molecular mechanisms underlying the unique functions of these genes in oocytes, including their long-term effects on oocyte development.

Acknowledgements

This work was supported by grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Ministry of Agriculture, Forestry and Fisheries of Japan (Development of stable production technology of cloned animals by somatic cell nuclear transfer) to T. K.

References

- Swann, K., Saunders, C.M., Rogers, N.T. and Lai, F.A. (2006): PLCzeta(zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin. Cell. Dev. Biol., 17, 264–273.
- Bachvarova, R. and Moy, K. (1985): Autoradiographic studies on the distribution of labeled maternal RNA in early mouse embryos. J. Exp. Zool., 233, 397–403.
- Schuetz, R.M. (1993): Regulation of zygotic gene activation in the mouse. Bio. Essays, 15, 531–538.
- Alizadeh, Z., Kageyama, S. and Aoki, F. (2005): Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol. Reprod. Dev., 72, 281–290.
- Henrion, G., Brunet, A., Renard, J.P. and Duranthon, V. (1997): Identification of maternal transcripts that progressively disappear during the cleavage period of rabbit embryos. Mol. Reprod. Dev., 47, 353–362.
- Goto, T. and Kinoshita, T. (1999): Maternal transcripts of mitotic checkpoint gene, Xbub3, are accumulated in the animal blastomeres of Xenopus early embryo. DNA Cell Biol., 18, 227–234.

- Hwang, K.C., Park, S.Y., Park, S.P., Lim, J.H., Cui, X.S. and Kim, N.H. (2005): Specific maternal transcripts in bovine oocytes and cleavaged embryos: identification with novel DDRT-PCR methods. Mol. Reprod. Dev., 71, 275– 283.
- Cui, X.S. and Kim, N.H. (2007): Maternally derived transcripts: identification and characterisation during oocyte maturation and early cleavage. Reprod. Fertil. Dev., 19, 25–34.
- 9) Wang, Q.T., Piotrowska, K., Ciemerych, M.A., Milenkovic, L., Scott, M.P., Davis, R.W. and Zernicka-Goetz, M. (2004): A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev. Cell., 6, 133–144.
- Hamatani, T., Carter, M.G., Sharov, A.A. and Ko, M.S. (2004): Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell., 6, 117–131.
- Fair, T., Murphy, M., Rizos, D., Moss, C., Martin, F., Boland, M.P. and Lonergan, P. (2004): Analysis of differential maternal mRNA expression in developmentally competent and incompetent bovine two-cell embryos. Mol. Reprod. Dev., 67, 136–144.
- 12) Mutter, G.L., Grills, G.S. and Wolgemuth, D.J. (1988): Evidence for the involvement of the proto-oncogene c-mos in mammalian meiotic maturation and possibly very early embryogenesis. Embo. J., 7, 683–689.
- 13) Paules, R.S., Buccione, R., Moschel, R.C., Vande Woude, G.F. and Eppig, J.J. (1989): Mouse Mos protooncogene product is present and functions during oogenesis. Proc. Natl. Acad. Sci. USA, 86, 5395–5399.
- 14) O'Keefe, S.J., Wolfes, H., Kiessling, A.A. and Cooper, G.M. (1989): Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg. Proc. Natl. Acad. Sci. USA, 86, 7038-7042.
- 15) Zhao, X., Singh, B. and Batten, B.E. (1991): The role of cmos proto-oncoprotein in mammalian meiotic maturation. Oncogene, 6, 43–49.
- 16) Huarte, J., Belin, D., Vassalli, A., Strickland, S. and Vassalli, J.D. (1987): Meiotic maturation of mouse oocytes triggers the translation and polyadenylation of dormant tissue-type plasminogen activator mRNA. Genes. Dev., 1, 1201–1211.
- Huarte, J., Belin, D. and Vassalli, J.D. (1985): Plasminogen activator in mouse and rat oocytes: induction during meiotic maturation. Cell, 43, 551–558.
- 18) Huarte, J., Stutz, A., O'Connell, M.L., Gubler, P., Belin, D., Darrow, A.L., Strickland, S. and Vassalli, J.D. (1992): Transient translational silencing by reversible mRNA deadenylation. Cell, 69, 1021–1030.
- 19) Strickland, S., Huarte, J., Belin, D., Vassalli, A., Rickles, R.J. and Vassalli, J.D. (1988): Antisense RNA directed against the 3' noncoding region prevents dormant mRNA activation in mouse oocytes. Science, 241, 680–684.
- 20) Tong, Z.B., Gold, L., Pfeifer, K.E., Dorward, H., Lee, E., Bondy, C.A., Dean, J. and Nelson, L.M. (2000): Mater, a maternal effect gene required for early embryonic

162 J. Mamm. Ova Res. Vol. 25, 2008

development in mice. Nat. Genet., 26, 267-268.

- 21) Tong, Z.B., Nelson, L.M. and Dean, J. (2000): Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm. Genome, 11, 281–287.
- 22) Rajkovic, A., Pangas, S.A., Ballow, D., Suzumori, N. and Matzuk, M.M. (2004): NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science, 305, 1157–1159.
- 23) Joshi, S., Davies, H., Sims, L.P., Levy, S.E. and Dean, J. (2007): Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev. Biol., 7, 67.
- 24) Wu, X., Viveiros, M.M., Eppig, J.J., Bai, Y., Fitzpatrick, S.L. and Matzuk, M.M. (2003): Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-toembryo transition. Nat. Genet., 33, 187–191.
- 25) Erbach, G.T., Lawitts, J.A., Papaioannou, V.E. and Biggers, J.D. (1994): Differential growth of the mouse preimplantation embryo in chemically defined media. Biol. Reprod., 50, 1027–1033.
- 26) Becker, M., Becker, A., Miyara, F., Han, Z., Kihara, M., Brown, D.T., Hager, G.L., Latham, K., Adashi, E.Y. and Misteli, T. (2005): Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell nuclear transfer. Mol. Biol. Cell, 16, 3887– 3895.
- Clarke, H.J., McLay, D.W. and Mohamed, O.A. (1998): Linker histone transitions during mammalian oogenesis

and embryogenesis. Dev. Genet., 22, 17-30.

- 28) Clarke, H.J., Oblin, C. and Bustin, M. (1992): Developmental regulation of chromatin composition during mouse embryogenesis: somatic histone H1 is first detectable at the 4-cell stage. Development, 115, 791–799.
- 29) Potireddy, S., Vassena, R., Patel, B.G. and Latham, K.E. (2006): Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function. Dev. Biol., 298, 155–166.
- 30) Keshet, E., Rosenberg, M.P., Mercer, J.A., Propst, F., Vande Woude, G.F., Jenkins, N.A. and Copeland, N.G. (1988): Developmental regulation of ovarian-specific Mos expression. Oncogene, 2, 235–240.
- 31) Vallee, M., Gravel, C., Palin, M.F., Reghenas, H., Stothard, P., Wishart, D.S. and Sirard, M.A. (2005): Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod., 73, 63–71.
- 32) Zeng, F., Hon, C.C., Sit, W.H., Chow, K.Y., Hui, R.K., Law, I.K., Ng, V.W., Yang, X.T., Leung, F.C. and Wan, J.M. (2005): Molecular characterization of Coriolus versicolor PSP-induced apoptosis in human promyelotic leukemic HL-60 cells using cDNA microarray. Int. J. Oncol., 27, 513-523.
- 33) Oh, B., Hwang, S., McLaughlin, J., Solter, D. and Knowles, B.B. (2000): Timely translation during the mouse oocyte-to-embryo transition. Development, 127, 3795– 3803.