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Abstract:  In mammals, the establishment of pregnancy
is dependent upon coordinated biochemical signaling
and physical interactions between the developing
conceptus and uterine endometrium.  These essential
forms of communication between the conceptus and its
maternal environment result in continued production of
progesterone from the corpus luteum (CL) and the
initiation of implantation/placentation.  During the peri-
implantation period, conceptuses in ruminant ungulates
secrete interferon-tau (IFNT), which acts on uterine
endometrium and attenuates endometrial production of
the luteolysin, prostaglandin F2α, resulting in the
maintenance of CL function.  Expression of the ovine
IFNT (oIFNT) genes is restricted to the mononuclear
cells of the trophoblast and the protein is produced for
only a relatively short and discrete window of time during
early pregnancy.  This review deals with identification,
charac te r i za t ion  and  regu la t ion  o f  IFNT gene
transcription, and uterine responses associated with
pregnancy establishment in ruminants.
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Estrous Cycles and Maternal Recognition of 
Pregnancy in Ruminants

As female animals reach puberty, they experience
follicular growth, ovulation, corpus luteum (CL) formation
and its regression, the processes of which are repeated

regularly unti l  the cessation of reproductive l i fe
(menopause).  Progesterone, produced and secreted by
CL, is involved directly and/or indirectly in numerous
uterine functions through endometrial secretions,
alteration of blood flow at implantation sites and
promotion of suitable physiological and/or immune
environments for normal embryonic development.  In
ruminants, the estrous cycle is regulated by uterine
prostaglandin F2α (PGF2α)-induced demise of the CL.
PGF2α is released from the endometrial luminal and
superficial glandular epithelium in an episodic fashion
toward the end of the estrous cycle.  Oxytocin, of
neurohypophyseal and luteal origin, binds oxytocin
receptors and initiates pulsatile PGF2α secretion, which
in turn, stimulates release of luteal oxytocin and creates
a positive feedback loop that results in short-duration
pulses which are effective in causing luteolysis [1].
Progesterone exposure during the early to mid-luteal
phase of the estrous cycle is essential for initiation of
uterine PGF2α production.  In sheep, PGF2α begins to be
secreted in a pulsatile manner on day 12 (day 0 = day of
estrus) of the 16 day-estrous cycle, but if the pregnancy
was established, episodic production of PGF2α is
attenuated [2, 3].  This endocrinological phenomenon,
the maintenance of CL function beyond a period of the
normal luteal phase, along with changes in maternal
immunology and metabolism, has been described as the
process of the maternal recognition of pregnancy [4].  It
is thought that maternal-embryonic communication
initiates this process, in which CL regression is inhibited
by a signal(s) from the conceptus, and progesterone
secretion is sustained and subsequently pregnancy is
established.
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Physiological Events Associated 
with Implantation

Implantation, a critical step for mammalian species in
establishing pregnancy, requires tightly regulated
completion of sequential events such as maternal
uterine development, conceptus development and
attachment/invasion to the endometrium, and placental
format ion.   Important ly,  conceptus and uter ine
development must be synchronized and coordinated
through physical and/or biochemical communications.
Although the initiation and completion (placental
formation) of implantation processes are similar
between species, the t ime frame in which these
physiological events proceed differs among mammalian
species.  In ruminant ungulates, the blastocyst hatches
from zona pellucida on day 8, however, it does not
immediately attach to the uterine epithelium.  The
spherical blastocyst remains unattached to the uterine
lumen for several days before its elongation begins on
days 12�13.  On day 16, the ovine conceptus starts to
attach to the endometrium when trophoblast elongation
(up to 25 cm in length) slows down or subsides.
Adhesion of the conceptus to the endometrium starts on
day 18, and placenta formation is initiated around day
20 [5].

Embryonic and fetal mortality in both farm animals
and humans occurs most frequently during the first few
weeks after conception, the period corresponding to
peri-implantation processes.  Although it occurs at a
much lower rate, embryonic lethal i ty in rodents
invariably occurs most frequently during the early
implantation period [6].  In cattle, it is estimated that the
fertilization rate is around 90% and the average calving
rate is approximately 55%.  This suggests that
embryonic/fetal mortality is about 35%, of which 70�
80% of embryonic losses occur between days 8 and 16
after artificial insemination [7].  Recently, the technology
to c lone animals was developed;  however,  the
efficiency of production has been very low.  In fact, only
2�3% or less of reconstructed eggs results in live
offspring, thus the development of this technology has
not reached its potential for improving l ivestock
production.  The low success rate can be attributed to
abnormalities in early developmental processes during
embryogenesis that include implantation, maternal
recognition of pregnancy, and formation of placenta and
initial organogenesis.

Identification of Anti-luteolytic Factor, oTP-1

In the 1960s, numerous observations determined that
the presence of an embryo within the uterus was
required for the maintenance of the CL.  Removal of the
conceptus from the ovine uterus on day 12 or before
resulted in CL regression (luteolysis) and the return to
estrus at the normal 16�17 day interval.  But if the
conceptus was removed from the uterus on or after day
13, the CL was maintained in a pseudopregnant state
[8].  When embryos were transferred to the uterus on
days 12, 13 or 14 of the estrous cycle into synchronized
non-pregnant ewes, only day 12 ewes became pregnant
[9].  The uterine infusion of conceptus homogenates
prepared from day 14 or 15 pregnant ewes inhibited
luteolysis, however, the conceptus homogenates from
day 25 pregnant ewes did not increase the length of the
estrous cycle [9].  This evidence suggests that a
signal(s) required for the establishment of pregnancy is
secreted from the embryo to mother around day 12 and
the timing of signal production is very critical.  In 1979,
Martal and coworkers observed that the extract of day
14�16 conceptuses, but not day 25 conceptuses actively
produced an antiluteolytic factor which extended CL life
span [10].  This factor was inactivated by heat or
proteinase treatment, thus this protein activity was
termed �trophoblastin�.  In 1982, Godkin and coworkers
then identified and purified a secretory conceptus protein
with antiluteolytic activity and named the protein as
ovine trophoblast protein-1 (oTP-1).  Its mass is about
19 kDa, which includes several isoforms with isoelectric
points ranging from 5.3 to 5.7 [11, 12].  Moreover, a
protein cross-reacting with oTP-1 antiserum was
identified in bovine conceptus cultured medium and
termed bovine trophoblast protein-1 (bTP-1) [13, 14].
The molecular mass of bTP-1 (22 to 24 kDa) is slightly
greater than that of oTP-1 due to N-glycosylation [15,
16].  Likewise, caprine conceptus was found to possess
trophoblast proteins similar to oTP-1 and bTP-1 [17, 18].

Infusion of purified oTP-1 directly into the uterus
causes the extension of luteal function, and attenuates
uter ine PGF2α  product ion [19,  20] .   Conceptus
homogenates, from which oTP-1 was removed, do not
prolong CL lifespan [21].  In addition, oTP-1 binds to the
endometrial receptor with high affinity and alters uterine
protein expression, but is not readily detected in the
blood or any other tissues [12].  Therefore, these
observations suggest that oTP-1 is secreted from the
trophectoderm of conceptus, acts as an anti-luteolysin,
and is thereby recognized as a factor which could elicit
the process of maternal recognition of pregnancy [22].
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Structure of Interferon-tau (IFNT) Genes

It was demonstrated through an analysis of cDNA and
protein sequences that  oTP-1 produced by the
conceptus was an interferon (IFN) [23�25].  The
deduced amino acid sequence of oTP-1 cDNA indicated
that it shares a high degree of similarity to that of type I
interferons (IFNs).  IFNs are cytokines, induced by viral
infection, double stranded RNA or malignant growth,
and have antiviral and antiproliferative activities.  These
are divided into two groups, Type I IFN and Type II IFN
[26].  Type I IFNs are induced by viral infection and
include several subfamilies, IFNα/IFNω and IFNβ, which
a re  p roduced  by  l eukocy tes  and  f i b rob las t s ,
respectively.  IFNγ is the only member in type II IFN and
produced by T cells or NK cells following mitogen
treatment.  This conceptus IFN possesses a high
degree of structual similarity to IFNω, consists of four
cysteine residues, which are conserved across Type I
IFN, and therefore this IFN belongs to a family of type I
IFN.  However, the observations that this IFN is not
secreted by blood cells and more importantly, it can be
serologically distinguished from other Type I IFNs, lead
to a new classification, ovine IFN-tau (oIFNT) [5, 22].  In
the subsequent studies, oIFNT genes were identified
and several of which were characterized for their
nucleotide sequences and were named as oIFNT o2,
o7, o8, o9 and o10 [27].  Furthermore, Southern blot
analysis indicated that the IFNT gene is limited to
ruminant ungulates [28].  It is considered that IFNT may
have diverged from IFNω and its divergence has
occurred along with the evolution of ruminant ungulates
[29].  Structural similarity between IFNT and other IFNs
has been well described elsewhere [22, 30].

Biological Properties of IFNT

CL regression is induced by endometrial secretion of
PGF2α ,  the product ion of  which is  regulated by
progesterone, estrogen and oxytocin [31, 32].  IFNT
was found to prevent estrogen receptor expression and
subsequently estrogen-induced oxytocin receptor
expression [33�35], and this is thought to be the
mechanism exhibited by IFNT for the prevention of
luteolysis.  In addition to the observation that the amino
acid sequence of IFNT shows high homology among
ruminant species, its anti-luteolytic activity is effective
across ruminant species.  Trophoblastic vesicles from
sheep or recombinant oIFNT could extend CL lifespan
in the bovine species [36, 37].  Recombinant oIFNT is
also effective in the extension of CL function in goats

[38].
IFNT possesses antiproliferative effects and strong

antiviral activity, and it exhibits 1 × 108 unit antiviral
activity/mg protein like other IFNs [39, 40].  It was
shown that oIFNT exhibits strong antiviral activity to HIV
and FIV, but it is less cytotoxic than human IFNα [41].
Commonly, it is believed that antiviral activity of IFN
exhibits high species specificity and its effect is reduced
remarkably when administered between species [26].
However, this is not the case for oIFNT since i t
possesses a strong antiviral activity to human or feline
retrovirus.

Interferon-stimulated Genes in the 
Endometrium

IFNT was originally identified as a conceptus factor
implicated in the process of maternal recognition of
pregnancy.  It was found that Type I IFNs bind to a
common receptor complex with two polypeptide
subunits (IFNAR1 and IFNAR2) [42], both of which are
present in ovine uterine epithelial cells [43].  The
surface epithelium of the uterine endometrium is
undoubtedly the primary target for IFNT [44], but
accumulated evidence suggests that IFNT can reach
the stroma [45, 46] and even the myometrium [46, 47].
It is well characterized that Type I IFNs upon binding to
the receptor activate the JAK-STAT-IRF (janus kinase-
signal transducer and activator of transcript ion-
interferon regulatory factor) signaling pathway [48],
causing the activation of genes so called interferon-
stimulated genes (ISGs).  A list of ISGs induced by
IFNT and/or progesterone can be found elsewhere [49,
50].

One of the most studied ISGs is ISG15 (interferon-
st imulated gene 15) expression during the peri-
implantation period.  ISG15, a ubiquitin-like protein, is
con juga ted  t o  i n t r ace l l u l a r  p ro te i ns  such  as
phospholipase C-γ1, JAK1, STAT1 and extracellular
regulated kinase 1 [51].  An increase in endometrial
production of ISG15 with the addition of recombinant
IFNT was shown in tissue and cell culture systems, the
observation of which is well supported by parallel
expression of conceptus IFNT and ISG15 in vivo [45,
51].

WNT7A (wingless-type MMTV integration site family,
member 7A) is also an endometrial factor induced by
IFNT between days 12 and 14 of ovine pregnancy [52].
The WNT family (19 genes in humans) consists of
secreted glycoproteins that regulate cell and tissue
g rowth  and  d i f f e ren t i a t i on  du r i ng  embryon i c
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development [53].  WNT family members have been
shown to play a critical role in synchronizing uterine-
conceptus interactions required for implantation in mice
[53].  It was shown that WNT7A exhibits autocrine
effects on the ovine luminal epithelium to regulate
uterine receptivity and conceptus implantation [54].

Expression of endometrial LGALS15 (galectin 15) is
induced by progesterone and is further enhanced by
IFNT [55] .   Galect ins  possess ing a conserved
carbohydrate recognition domain bind β-galactosides,
resulting in cross-linking between glycoproteins and
glycolipid receptors such as integrins on the cell surface
[56].  It was recently found that LGALS15 stimulates
migration and adhesion of ovine trophectoderm cells via
activation of Jun N-terminal kinase and integrin
signaling, respectively [57].

IFNT induces several chemokines in endometriual
t issues including chemokine ligand 10 [CXCL10,
interferon-inducible protein-10 kDa (IP-10)] and CXCL9
[monokine induced by interferon γ (Mig)] [58�60].
Chemokines are small, secreted proteins possessing
chemotactic activity and leading to selective attraction
of inflammatory cells.  The chemokine superfamily can
be subdivided according to the organization of the N-
terminal conserved cysteine (C) motif into four groups,
which are designated as C-, C-C-, C-X-C, and C-X3-C-
chemokines [61].  The minor differences in the N-
terminal structure result in differential actions depending
on cell type [62].  C-X-C-chemokines generally attract
neu t roph i l s  and  T  ce l l s ,  C -C-chemok ines  a re
chemoattractive for monocytes, eosinophils, basophils
and T cells [63, 64].  Whereas the C-X-C and C-C-
subfamilies constitute several members, the C- and C-
Xs-C-chemokines subfamilies are represented by only
one member so far, designated lymphotactin (Lptn) also
known as activat ion- induced T cel l-der ived and
chemokine-related molecule (ATAC) or single C motif-1
(SCM-1) and fractalkine/neurotactin, respectively [65�
68].

It was found that endometrial expression of CXCL10
was induced by conceptus IFNT [59].  Endometrial
CXCL10 in turn attracts immune cells, particularly NK
cells, to the implantation site of the endometrium [69],
and through CXCL10 receptor, CXCR3, this cytokine
regulates trophectoderm cell migration and its integrin
expressions [70].  These changes result in conceptus
migrations, apposition and initial attachment to the
uterine epithelial cells [70].

Early Conceptus Development

In mice, blastocyst formation marks the segregation
of  the f i rs t  two cel l  l ineages in the mammal ian
preimplantation embryo: the inner cell mass (ICM) that
will form the embryo proper and the trophectoderm (TE)
that gives rise to the trophoblast lineage.  Commitment
to ICM lineage is attributed to the function of the two
transcription factors, Oct4 (encoded by Pou5f1) and
Nanog.  However, a positive regulator of TE cell fate
has not  been wel l  descr ibed.   The caudal- type
homeodomain protein Cdx2 and the T-box protein
eomesodermin (Eomes) are expressed in the TE, and
both Cdx2 and Eomes homozygous mutant embryos die
around the time of implantation.  A block in early TE
differentiation occurs in Eomes mutant blastocysts.
However, blastocysts of Eomes mutant implant, and
Oct4 and Cdx2 expression are correctly restricted to the
ICM and TE, respectively.  Blastocoel formation in Cdx2
mutants is init iated but epithelial integrity is not
maintained and embryos fail to implant [71].  Loss of
Cdx2 results in failure to down-regulate Oct4 and Nanog
in outer cells of the blastocyst and subsequent death of
these cells.  Thus, Cdx2 is essential for segregation of
the TE from ICM lineages at the blastocyst stage by
ensuring the repression of Oct4 and Nanog in the TE
[72, 73].  In ruminant ungulates, however, OCT4
expression in the TE can be detected up to day 10 of
pregnancy, even after blastocyst formation and hatching
[74, 75].  It was shown that CDX2 is expressed in ovine
and bov ine t rophob lasts  dur ing  the conceptus
elongation period [75, 76].

Regulation of IFNT Production

The expression of IFNT is unique in at least three
aspects: a lack of viral inducibility, restricted expression
to the embryonic t rophectoderm and sustained
synthesis for more than several days [22].  IFNT is not
induced by double stranded RNA or viruses [77], but
produced by the early trophoblast at a very high level,
approaching 100 µg per cultured conceptus from day 16
pregnant ewe during 24 hours [11, 78].   Minute
expression of oIFNT can be detected on day 8 of
pregnancy, near the time of blastocyst hatching [79].
The production of oIFNT increases remarkably on day
13, while the blastocyst starts to elongate [80] and
reaches the maximum level on day 16 of pregnancy [11,
78].  Expression of oIFNT decreases rapidly as the
process of implantation proceeds and at day 22, oIFNT
is no longer detected [11].  By contrast, IFNα and IFNβ
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are induced by double stranded RNA, virus or other
pathogens in a variety of tissues, and their expression is
generally short-l ived, just a few hours after viral
infection.  These observations indicated that the
expression of IFNT gene is obviously regulated in a
different manner from that of IFNα and IFNβ.

It was thought that the onset of IFNT expression is
genetically programmed, which is independent of the
maternal uterine environment.  This was supported by
the observation that IFNT production could be initiated
after in vitro ferti l ization and maturation [81, 82].
However, substantial production of IFNT seen in utero
could not be achieved without interaction with the
uterine environment [81].  GM-CSF and IL-3 are known
to be the factors that s igni f icant ly enhance the
production of oIFNT [78, 83�85].  In addition, GM-CSF
express ion  i s  found  to  be  h ighe r  in  p regnan t
endometrial tissues than in cyclic animals [78], and
promotes development of in vitro produced bovine
embryo [86].  These data indicate that the presence of
the conceptus and/or conceptus secretory proteins

increases endometrial expression of GM-CSF, which
enhances conceptus IFNT production during the peri-
implantation period.  Recently, Ealy and coworkers
demonstrated that endometrial fibroblast growth factor 2
(FGF2) is capable of stimulating IFNT in bovine and
ovine species [85, 87].  These investigators found that
high quantity of FGF2 mRNA and immunoreactive
FGF2 exist in the endometrium.  More importantly,
supplementation of bovine FGF2 increases not only
IFNT mRNA levels but biologically active IFNT release
from bovine trophoblasts and the trophoblast cell line,
CT-1 [85, 87].  These results suggest that conceptus
production of IFNT is regulated at least in part by
maternal factors.  However, the timing or degree to
which maternal factors regulate or contribute to IFNT
production has not been fully established.

Transcriptional Regulation of IFNT Genes

The effect of GM-CSF and IL-3 on oIFNT production
in the in vitro culture system is mimicked by the addition

Fig. 1. Gene expression associated with the process of implantation in ruminants.  Maternal cytokines influence
gene expressions in the conceptus, which in turn secretes a pregnancy recognition hormone IFNT.  This
IFN affects endometrial gene expressions, resulting in attenuation of pulsatile PGF2α release, increase in
chemokine expression and immune cell migration, and conditioning uterine environments for conceptus
implantation to the uterus.
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of a protein kinase C (PKC) activator, phorbol 12-
myristate 13-acetate (PMA) [88].  In addition, the PKC
inhibitor, calphostin, was observed to abolish the
increase in oIFNT mRNA induced by GM-CSF [88].
Prior to the establishment of ruminant trophoblast cell
lines in the year 2000 [89, 90], human choriocarcinoma
JAR and JEG3 cells were commonly used for the
analysis of IFNT gene transcription.  Both GM-CSF and
PMA transactivated the oIFNT-CAT reporter constructs,
bu t  PMA was  more  e f fec t i ve  i n  th i s  t rans ien t
transfection system [88, 91].  These results suggest that
endometrial GM-CSF enhances IFNT gene transcription
through PKC mediated signaling pathways.

A transcription factor, JUN, was also shown to activate
oIFNT-CAT in JEG3 cells [91].  JUN, a protooncogene, is
known to constitute an activator protein-1 (AP-1), which
is a target of PKC.  Using the upstream region of oIFNT
gene in JEG3 cells, Yamaguchi and co-workers identified
an enhancer region (distal enhancer) between �654 and
�555 bases (transcription-initiation site is +1).  This
enhancer region included AP-1 and GATA recognition
sites to which nuclear proteins extracted from JEG3 cells
bound [92, 93].  In addition, silencer elements were also
thought to exist on both sides of the enhancer region of
the oIFNT gene [94].  Ezashi et al. demonstrated that
transcription factor ETS2 binds to the sequences
(proximal promoter) from �70 to �79 bases of bIFNT
gene [95].  ETS2, localized in the ovine embryonic
trophectoderm, transactivated bIFNT-luciferase reporter
construct in JAR cells [95].  These investigators also
demonstrated that OCT4 represses the ETS2-induced
transcription of bIFNT promoter construct [74].  As the
expression of OCT4 subsides in the trophectoderm,
ETS2 becomes effective in increasing IFNT gene
transcription.

The question of whether either AP-1, ETS2 or both is
required for IFNT gene transcription has been debated.
Experiments performed earlier indicated that although
the proximal promoter,  to which ETS2 binds, is
undoubtedly required for expression, the far upstream
AP-1 (JUN) binding site of the distal enhancer region is
necessary for oIFNT gene transcription [92, 93, 96].  If
in fact, both of AP-1 and ETS2 are required for IFNT
gene transcription, but it is unclear how these factors
work cooperatively on IFNT  gene expression.  A
transcription co-activator, cAMP-response element
binding protein-binding protein (CREBBP) [97], which is
a bridging factor with histone acetyltransferase (HAT)
activity, was shown to regulate oIFNT gene expression
[98, 99].  It was found that CREBBP controls oIFNT
gene expression through direct binding to ETS2 protein

and to JUN [99, 100].
A TE lineage-specific transcription factor, CDX2, is

expressed in the ovine and bovine trophoblasts during
the time in which IFNT is produced [75, 76].  More
importantly, over-expression of Cdx2 along with Jun
and Ets2 in JEG3 cells was very effective in increasing
the level of transcription of an oIFNT reporter construct
[76].  Recently, another factor, a homeodomain factor
distal-less 3 (DLX3) which is required for placental
development in mice [101], was found to be important
for IFNT gene transcription [102].  DLX3 expression was
found in CT-1 cells and it acts cooperatively with Ets2 in
JAR cells.  These results suggest that CDX2 and DLX3
could be key elements, determining trophoblast cell-
specific activation of IFNT gene expression.

In mice, trophectoderm expression of Cdx2  is
regulated through FGF signaling from the ICM, which is
in turn essential for the maintenance of trophoblast
stem cells [103-105].  FGF4 is expressed by the ICM at
the blastocyst stage and subsequently in the epiblast
(embryonic ectoderm) whereas the FGF receptor,
FGFR2, is expressed in trophoblast cells immediately
adjacent to the epiblast (chorion or extraembryonic
ectoderm) [106].  If FGF signaling is removed, murine
trophoblast stem cells become terminally differentiated.
In ruminant ungulates, however, CDX2 could not be
regulated solely by FGF signaling, because CDX2 and
the ICM specific transcription factor OCT4 are both
expressed in  bov ine t rophoblasts  [107] ,  not  in
agreement with those in mice [72].   It was found that
transcripts for CREBBP, JUN and ETS2 transcription
factors,  a l l  of  which are involved in IFNT  gene
transcription, are expressed to a similar extent in days
15 and 21 ovine trophoblasts.   Finding that the
endometrium produces FGF2 may reveal another
dimension of transcriptional regulation of IFNT genes by
the maternal factor [85].  However, to determine
whether or not endometrial FGF2 is actively involved in
the transcriptional regulation of IFNT genes in utero
requires further investigation.

Intra-cellular Signaling for IFNT Transcription

CREBBP could recruit many nuclear factors including
those exhibiting HAT activities such as ATF-2 and P/
CAF [108, 109].  However, it remains to be determined
whether HAT activity of CREBBP is required for the
basal and increased transcription of the IFNT gene.
During a period of pregnancy, various cytokines and
growth factors are known to be present at maternal-fetal
annexes [110].  It was demonstrated that GM-CSF and



104 J. Mamm. Ova Res. Vol. 26, 2009
IL-3 of the maternal origin activated IFNT gene and the
effect of GM-CSF on IFNT production appears to be
mediated through PKC pathway [78, 83, 88, 111].
Since PKC is known to induce AP-1 activation and
ETS2 is also under the PKC signal cascade [112, 113],
GM-CSF/PKC/AP-1  cascade  i s  a  reasonab le
hypothesis for IFNT gene activation.  It has been
demonstrated that Ras/Raf/MAPK signaling pathway,
which is independent of the PKC pathway, is activated
by GM-CSF [114�116].  In addition, AP-1 and ETS2 are
also activated via Ras/Raf/MAPK signaling pathway
[108, 117�123].  If in fact IFNT gene expression is
activated by this cascade, several possible signaling
cascades could be functioning: 1) The PKC signal
cascade is initially activated by maternal GM-CSF,
resulting in the activation of AP-1 and ETS2.  The
transcription of IFNT gene is initiated at this time.
Subsequent to the activation of PKC signal cascade,
Ras/Raf/MAPK signaling pathway is activated by GM-
CSF and/or other uterine factor(s), and IFNT gene
expression is further activated.  2) The Ras/Raf/MAPK
signaling pathway is initially activated by maternal GM-
CSF (and/or FGF2).  Following the activation of this
signal cascade, PKC signal ing pathway is then
activated and the transcription of IFNT gene increases
further.  3) Both PKC and Ras/Raf/MAPK signal
cascades are activated by maternal GM-CSF (and/or
FGF2) at the same time, which cause the initiation and
maintenance of active IFNT gene transcription.  4)

Alternatively, CDX2 is activated by phosphorylation via
MAPK signaling pathway, resulting in modulation of its
transcriptional activity.  Because the presence of
phosphry la ted CDX2 has been detected in the
blastocyst, it is probable that Ras/Raf/MAPK signal
transduction is indicative of CDX2 expression, which in
turn activates IFNT gene transcription.

Epigenetic Regulation of IFNT Transcription

Epigenetic alterations such as variation in covalent
histone modification and DNA methylation regulate
gene expression by altering chromatin conformation.  It
is  known that  IFNT product ion is  l imi ted to the
trophectoderm.  Quite recently, Sakurai and coworkers
investigated whether or not IFNT gene transcription
could be induced in a cell type not related to trophoblast
cells [124].  These investigators demonstrated that
significant increase in endogenous IFNT transcription in
a bovine kidney epithelial MDBK cells (which do not
normally express IFNT) can be induced through CDX2
over-expression and high H3K18 acetylation.  They also
noted that lowering H3K9 methylation could be required
for the degree of IFNT transcription seen in trophoblast
cel ls.   These f indings suggest that  induct ion of
endogenous IFNT transcription in bovine trophoblast
ce l l s  r esu l t s  f r om pa r t i a l  decondensa t i on  o f
chromosomal domains by histone acetylation and
sufficient CDX2 expression, allowing other transcription

Fig. 2. Transcriptional regulation of IFNT gene expression.  Transcription factors JUN, ETS2 and CREBBP are
constitutively expressed during the period of IFNT expression.  Trophoblast specific factor CDX2 along with
epigenetic regulation creates the euchromatin state where nucleosome structures are loosened and transcription
factor assembly becomes possible, resulting in active IFNT gene transcription.
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factor bindings to the upstream region of IFNT genes.
Genomic DNAs extracted from uterine endometrium,

white blood cells (WBC), day 14 trophoblasts and day
20 trophoblasts were subjected to bisulfite sequencing
analysis and examined for the methylation status
between nucleotides �980 and �1 of the oIFNT-o10
gene, a stretch containing 14 CpG sites [125].  There
are 10 CpG sites in Region 1 (�980 to �450), and the
genomic DNA from uterine endometrium and WBC,
both of which do not express oIFNT-o10, displayed
higher methylation than day 14 and 20 trophoblasts.
Day 14 trophoblasts, which had highest transcription of
the oIFNT-o10 gene, was less methylated in the
upstream region of oIFNT-o10 gene than day 20
trophoblasts, which possessed minute amounts of
oIFNT-o10 mRNA.  Among 10 CpG sites in the Region
1 of day 14 trophoblasts, 5 CpG dinucleotides at �806, �
799, �774, �769 and �628 were not methylated.  Of 4
CpG sites in Region 2 (�450 to �1), those in day 14
trophoblasts were least methylated, with a methylation
score of  less than 20% and the CpG si te at  �7
completely non-methylated.  Among the 4 CpG sites,
uterine endometrium, WBC and day 20 trophoblasts
were far more methylated, with methylation scores of
more than 50%.  Changes in the degree of DNA
methylation in the upstream sequences of the oIFNT
gene could be one of the major mechanisms leading to
down-regulation of its expression and possibly its
silencing in non-conceptus tissues [125].

Conclusion

For a pregnancy to succeed, CL life-span needs to be
maintained beyond the normal luteal phase of the
estrous cycle.  Under progesterone dominant uterine
environments, the ruminant conceptus produces IFNT
in substantial amounts during the peri-attachment
period.  The endometrium must then respond to IFNT
signaling by producing numerous factors including
ISGs.  However, it is still unclear why IFNT is expressed
only in trophoblasts and how its production is initiated
and terminated within a short period of development.
Likewise, proper endometrial responses supportive of
conceptus development, attachment/invasion and
placental formation are not definitively characterized.
Further efforts are therefore required to elucidate
molecular mechanisms associated with conceptus-
endometrial interactions, resulting in proper placental
formation.
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