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Abstract: Epigenetic regulation of gene expression 
plays critical roles in differentiation of cells and organs. 
In mammalian placentation, it is clearly shown that ge-
nomic imprinting which is primarily controlled by DNA 
methylation is essential for placentation. Addition to 
DNA methylation, histone modifications and non-coding 
RNAs are also involved in placentation. Recently, it has 
been shown that epigenetic mutations could cause medi-
cal complications during pregnancy such as FGR (Fetal 
Growth Restriction) and PIH (Pregnancy Induced Hyper-
tension). Developmental epigenetics would contribute 
to establish new concepts of diseases and provide new 
treatments in future.
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Introduction

Human Genome Project was completed in 2003. It was 
the national project and took more than 10 years and 
cost several billions of dollars. Knowledge of the project 
innovate our methods drastically. Nowadays, you can get 
a whole genome sequencing results only for 1,000 dol-
lars within approximately two months. What you need to 
do is just send your genomic DNA to a company. Whole 
genome sequencing is not a special analysis anymore.

On the other hand, a lot of life phenomenon and diseases 
still remain unknown and/or unexplained even after human 
genomic sequences were read. The new progress of re-
search fields in the “Post Genome Sequence Era” is indis-
pensable for further development of the reproductive medi-
cine and biology. Therefore, I focus on topics of epigenetics 
in this review and introduce the basics of epigenetics par-
ticipating in placentation and in human diseases.

Definition of Epigenetics

Though nuclei of approximately 60 trillion cells consti-
tuting single human have identical genetic information 
fundamentally, the cells differentiate into different cells, 
different organs completely. Besides, dedifferentiation 
and redifferentiation do not occur after final cell fate, and 
they strictly maintained themselves. These are a matter 
of common knowledge, but how are different cells pro-
duced by the identical genomic information, and how do 
cells in organs maintain themselves without maldifferen-
tiation for dozens of years? The total picture remains un-
known, but some inheritable information except conven-
tional “genetic information” exists and is transmitted after 
cell division to maintain their functions. The inheritable 
information except DNA sequences, that is, “epigenetics” 
makes cell functions stable for long term.

Epigenetic Mechanisms in Placentation

DNA methylation
Three DNA methyltransferase genes, DNMT1, DN-

MT3A and DNMT3B are identified and DNMT1 is called 
a maintenance methyltransferase because the DNMT1 
protein has a strong enzyme activity as a hemi-methyl-
transferase which recognize newly synthesized strand in 
replication of DNA. DNMT3A and DNMT3B are so called 
“de novo type” DNA methyltransferases and have enzy-
matic activity to make unmethylated DNA methylated.

In mammalian early development, genome-wide DNA 
methylation is erased by the blastocyst stage after the 
fertilization (Fig.1) [1]. However, the methylation of im-
printed regions escapes erasure. From embryo implan-
tation till gastrulation stage, strong de novo DNA meth-
yltransferase activity is observed. After removal of the 
DNA methylation, a specific DNA methylation pattern de-
pending on cell fates and specific organ differentiations 
are established, then specific gene expression patterns 
are established subsequently. At this period, extraembry-
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onic tissues (placentas) maintain hypomethylated status 
for the whole genome. However, DNA methylation mech-
anism is definitely indispensable to placentation. For ex-
ample, permeability and proliferation activity of tropho-
blasts are suppressed by 5-aza-2’-deoxycytidine which 
is an inhibitor of DNA methylation in cell strain and cause 
hypoplasia of the placentas in rats consequently [2–4]. 
In addition, DNA methylation states of several genes in 
normal placenta are similar to that of tumors, and it could 
create various characteristics of the trophoblasts [5].

Genomic imprinting
Genomic imprinting is an essential epigenetic mecha-

nism especially for differentiation and growth of placentas 
and fetuses. Several special chromosomal regions are 
methylated in a completely opposite manner depending 
on whether their origins are paternal (a sperm cell) or ma-
ternal (an oocyte). Since the special methylation state reg-
ulate expression of neighboring genes, one allele in the re-
gion is expressed and another is silenced precisely. These 
special DNA methylation states are established in game-
togenesis of parental generation. This is the reason why 
this special gene regulation is called genomic imprinting. 
The imprinting information is “imprinted” in every parental 
generation, and these genes are controlled according to 
“imprinted” information in next generations (Figs. 1 and 2).

If two uniparental chromosomes present, imprinted 
genes in the chromosomes are unbalanced in a DNA 
methylation state, gene expression levels become zero 

or double. Mouse androgenotes which posse normal 
number chromosomes but all are paternal origins, show 
massive growth placentas and poor growth embryos. In 
human, the paternal diploids show similar aberrant differ-
entiation. They differentiate into trophoblasts, but never 
into embryonic part, and cause hydatidiform moles con-
sequently. On the other hand, maternal diploids show 
abnormal differentiation in an opposite way. They differ-
entiate into various tissues and cells but never into tro-
phoblast lineage. Embryos derived from oocytes of Dn-
mt3L null mutant female mice are embryonic lethal even 
though they harbor a wild type Dnmt3L allele. Loss of 
specific methylation in imprinted locus in oocytes of null 
mutants cause loss of imprinting in zygotes and placen-
tation failure [6, 7]. In addition to many studies of imprint-
ing diseases and model mice, the comparison with the 
other species strongly suggest that the genomic imprint-
ing is a function acquired in the evolution of the mam-
malian, especially placentation approximately 150 million 
years ago. [8, 9]

During early human development, placentas still ex-
press imprinted genes randomly and gradually they es-
tablish uniparental allelic expression (genomic imprinting) 
[10–12]. On the other hand, some regions strictly keep im-
printing without variations of individuals and differences 
of developmental stages [13]. These findings are neces-
sary for understanding molecular mechanisms of placen-
tation, variations of normal placentation to diagnose aber-
rant epigenetic regulation of human development.

Fig. 1. Epigenetic reprograming in mammalian development.
Methylation imprints are established in oogenesis and spermatogenesis. Imprinted genes escape 
genome-wide reprogramming of DNA methylation.
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Histone modifications
Genomic DNA coils itself around histone proteins and 

it takes compact superstructure. N-terminal amino acids 
of histone proteins are modified by methylation, acety-
lation, phosphorylation and ubiquitination and affect the 
chromatin structure (Fig. 3). Many specific modification 
enzymes (i.e., SET domain proteins) and erasure en-
zymes (i.e., HDAC) are found. Since each histone modifi-
cation has specific role on gene regulation, it is called the 
histone code. For example, Eset gene which is a methyl-
transferase for ninth lysine of a histone H3 tail, is neces-
sary for retroviral suppression in genomes [14], and it is 
clearly shown that the Eset protein repress differentiation 
of ICM (Internal Cell Mass) to extraembryonic tissue in 
the blastocyst stage [15].

Fig. 2. Roles of genomic imprinting in development.
Differences of DNA methylation between paternal and maternal chromosomes cause uniparental gene 
expression.

Fig. 3.	 Epigenetic	modification	and	chromatin	structure.
DNA	methylation	and	histone	modification	(acetylation,	
methylation etc.) could affect chromatin structure and 
functions	of	modified	regions	consequently.
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Non-coding RNA
Physiological functions of non-coding RNAs (the RNAs 

which is not translated to protein) becomes clear recent-
ly. non-coding RNAs are essential to the X chromosome 
inactivation [16] and regulate some genomic imprinting. 
siRNAs in oocytes are reported [17]. Such non-coding 
RNAs could be involved in molecular mechanisms of in-
fertility.

Epigenetic mutations of placentas in human diseases
As it has been mentioned above, since complete hy-

datidiform moles are normal diploid but only possess pa-
ternal genomes, they show quite deviated differentiation 
potentials. Surprisingly, it has shown that familial repeti-
tive complete hydatidiform mole cases are normal dip-
loid with parental genomes. They are genetically normal, 
however, epigenetically abnormal. The mole tissues lose 
maternal DNA methylation imprints systematically [18]. 
It is expected that comparison between rare repetitive 
moles and typical moles/normal villus would give clear 
picture of the epigenetic mechanisms involved in normal 
development of trophoblasts.

In gestational trophoblastic diseases, various aberrant 
DNA methylation patterns are observed. Hypermethyl-
ation of tumor suppressor gene promoters in complete 
hydatidiform moles and choriocarcinoma are reported 
[19]. Oct4 gene which is indispensable to maintain em-
bryonic stem cells undifferentiated is highly methylated 
and suppressed in complete hydatidiform moles and 
choriocarcinoma cell lines [20].

Recently, several groups report that there are defects 
of genomic imprinting in FGR (Fetal Growth Restriction) 
cases [21–23]. They analyze DNA methylation and ex-
pression of imprinted genes of placentas and show loss 
of genomic imprinting (loss of methylation and/or loss of 
uniparental expression) in the FGR cases. We also ana-
lyze strict DNA methylation levels of imprinted regions 
systematically and find some FGR cases show placenta-
restricted hypomethylation.

Pregnancy induced hypertension (PIH) is also a candi-
date disease which could be caused by epigenetic muta-
tions. p57 gene (a typical imprinted gene) knockout mice 
show PIH-like symptoms [24]. In PIH cases, potential 
causes of suppression of another imprinted gene H19 
and expression changes of micro RNAs are suggested 
[11, 25].

Future Directions

Epigenetics is a fundamental mechanism of gene ex-
pressions and regulate cell functions. It has been shown 

that several abnormal pregnancies have abnormal epi-
genetic background which could be causes of diseases. 
Epigenetic modification could be changed by environ-
mental conditions. The changed epigenetic modification 
could exist and affect gene functions for long time [26]. 
To understand epigenetic mechanisms, genetic analy-
sis is also important. These are two sides of the same 
coin. With progress of techniques for genetic analysis, 
it becomes easier to detect genetic variations and inte-
grated understanding of both genetics and epigenetics 
profiling should advance rapidly. Epigenetics has many 
and varied potential medical applications. Repressors of 
DNA methylation and histone deacetylase is marketed 
as a therapeutic drug. Elucidation of epigenetics in the 
differentiation of trophoblast cells would propose a new 
concept, diagnosis and treatment for abnormal placenta-
tion in future.
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