In Vitro Development of Porcine In Vitro Matured Oocytes Vitrified after Removal of Cytoplasmic Lipid Droplets

Kenji Momozawa*, Haruka Iwasaki, Yuka Onoda, Rie Hagiwara, Mariko Mori and Yoshinori Fukuda

School of Veterinary Medicine, Kitasato University, Aomori 034-8628, Japan

Abstract: The objective of the present study was to investigate the in vitro developmental competence of porcine in vitro matured (IVM) oocytes vitrified after removal of cytoplasmic lipid droplets (delipation). After vitrification and warming, the delipated porcine IVM oocytes were inseminated and subsequently cultured in vitro. The rate of development to the blastocyst stage of delipated, vitrified oocytes (5.9%) was significantly lower than that of control oocytes (untreated oocytes) (26.2%). We also examined the influence of delipation of porcine IVM oocytes on development to the blastocyst stage following in vitro fertilization (IVF). Delipated porcine IVM oocytes (not vitrified) were inseminated and subsequently cultured in vitro. The rates of development to the blastocyst stage were similar for delipated and undelipated oocytes (21.1% and 26.2%, respectively). The results of the present study showed that delipated, vitrified porcine IVM oocytes can develop to the blastocyst stage following IVF, though blastocyst formation rate was low, and that delipation of porcine IVM oocytes did not negatively affect their development to blastocyst stage.

Key words: Delipation, Pig, Oocyte, Vitrification, Embryo development

Introduction

Some success in cryopreservation of porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage has been achieved with vitrification methods [1–4]; however, the developmental competence of porcine IVM oocytes after vitrification is greatly impaired. The presence of a large number of intracytoplasmic lipid droplets in the oocytes has been considered an obstacle to cryopreservation of porcine oocytes, as lipid reduces the cyrotolerance of the oocytes and causes irreversible damage to the membrane structure at low temperatures [5]. Nagashima et al. [6, 7] showed that delipation, the removal of cytoplasmic lipid droplets from embryos, remarkably improves embryo viability following cryopreservation, and it has subsequently been shown that the cyrotolerance of porcine germinal vesicle-stage oocytes [8, 9] and early-stage embryos [5, 10, 11] can be dramatically increased by delipation. On the other hand, to our knowledge, there have been very few studies of the developmental competence of delipated porcine IVM oocytes at the MII stage after cryopreservation.

Our vitrification system is a simple method which vitrifies embryos on a membrane filter which absorbs extracellular vitrification solution [12]. We have reported that the fertility of delipated porcine IVM oocytes cryopreserved by our vitrification system was not different from that of undelipated fresh oocytes [13]. However, no data are available regarding developmental competence after IVF of delipated, vitrified porcine IVM oocytes cryopreserved using our vitrification system. The objective of this study was to investigate the in vitro developmental competence of delipated, vitrified porcine IVM oocytes following IVF. Furthermore, we examined the influence of delipation of porcine IVM oocytes on development to the blastocyst stage following IVF.

Materials and Methods

In vitro maturation (IVM) of oocytes

Ovaries obtained at a local abattoir were wrapped in a paper towel soaked in 0.9% saline and transported to the laboratory while kept at a temperature of approx. 30 °C. Cumulus-oocyte complexes (COCs) were aspirated from 3–6-mm follicles of ovaries into a 5-ml disposable sy-
Removal of cytoplasmic lipid droplet from oocytes

After 44 h of IVM, COCs were treated with 10 units/ml hyaluronidase dissolved in the basic maturation medium and then denuded of cumulus cells by gentle pipetting. Oocytes at the metaphase II (MII) stage were selected and cultured in maturation medium. The basic maturation medium was modified TYH medium [14], hereafter referred to as TYH-M, which consisted of 115.0 mM NaCl, 4.78 mM KCl, 1.71 mM CaCl₂, 0.27 M glucose and 7.5 µg/ml cytochalasin B. For lipid removal, the centrifuged oocytes were immediately manipulated in the same medium. The lipid droplets were collected from the oocyte by micromanipulation, using a beveled suction pipette (diameter, 7.5 µm) attached to a micromanipulator (MO-108; Narishige, Tokyo, Japan) under an inverted microscope [13]. After lipid removal, the oocytes were washed several times and maintained in mPB1 supplemented with 7.5 µg/ml CB for 10 min.

Vitrification

Delipated oocytes were cryopreserved by the vitrification procedure of Momozawa and Fukuda [12] with some modification [13]. The basic medium used for vitrification was mPB1 supplemented with 14.8 mM L-proline, 1 mg/ml fetuin and 0.2 M trehalose. The vitrification solution consisted of 30% (v/v) ethylene glycol (EG), 0.5% (v/v) glycerol (G) and 0.5 M sucrose. The delipated oocytes were exposed for 2.5 min to 200-µl droplets of the basic medium (39 °C). Subsequently, the delipated oocytes were equilibrated with equilibration solutions (solutions A, B and C) at 39 °C in a stepwise manner. The delipated oocytes were exposed first for 35 sec to 500-µl droplets of solution A, which was composed of 7% (v/v) EG and 0.5% (v/v) G in mPB1, then for 30 sec to 500-µl droplets of solution B, which was composed of 14% (v/v) EG and 0.5% (v/v) G in mPB1, and finally for 30 sec to 500-µl droplets of solution C, which was composed of 21% (v/v) EG and 0.5% (v/v) G in PB1. Immediately after equilibration, the delipated oocytes were exposed for 25 sec to 500-µl droplets of the vitrification solution, then loaded into a glass capillary with about 5 µl of vitrification solution and placed on a nitrocellulose membrane filter (13 mm in diameter, 8.0 µl in pore size). Subsequently, the vitrification solution covering the oocytes was absorbed by the membrane filter, and the membrane filter with the oocytes was plunged into liquid nitrogen (LN₂) and placed in a membrane filter container in LN₂. The vitrified oocytes were stored in LN₂ for 7–174 days. The vitrified oocytes were ultra-rapidly thawed, and the cryoprotectants were removed in a stepwise manner at 39 °C. In brief, the membrane filter with the vitrified oocytes was transferred from LN₂ into 2 ml of mPB1 containing 0.5 M sucrose. The recovered oocytes were consecutively transferred to 500-µl droplets of mPB1 supplemented with 0.3 M or 0.15 M sucrose for 2 min. Subsequently, the delipated oocytes were cultured for 2 h in fresh maturation medium. The delipated, vitrified oocytes, delipated oocytes without vitrification and control oocytes were subjected to IVF and IVC. Control oocytes were neither delipated nor vitrified.

IVF and in vitro culture (IVC)

IVF was carried out according to Momozawa et al. [13]. Briefly, ejaculated spermatozoa from a Landrace boar were preserved for 18–20 h at 15 °C. After preservation, suspensions of spermatozoa were washed twice by centrifugation at 900 x g for 5 min in PVP-free fertilization medium supplemented with 4 mM caffeine (sodium benzoate, Sigma-Aldrich) and 0.5 mM citrate (sodium citrate-trisodium). The fertilization medium was 10 mM...
HEPES-buffered Whittingham's modified Tyrode's solution (WTS) [17] (sodium lactate-free) supplemented with 1 mg/ml PVP instead of BSA. The washed spermatozoa were resuspended in 1 ml of PVP-free fertilization medium supplemented with 4 mM caffeine and 0.5 mM citrate. The sperm suspension was diluted 1:1 with the fertilization medium supplemented with 1.0 mg/ml penicillamine (Sigma-Aldrich), 0.6 mM methyl-β-cyclodextrin (Sigma-Aldrich), 0.5 mM citrate, 3.0 units/ml heparin (heparin sodium salt) and 2 mg/ml PVP. The spermatozoa were preincubated in 1.0-ml droplets covered with mineral oil under a gas phase of 100% N₂ with high humidity for 2.5 h, and then preincubated under a gas phase of 5% CO₂ for 1 h at 39 °C. After 3.5-h preincubation, a small amount of sperm suspension was introduced into 50-µl droplets of fertilization medium supplemented with 2 mM caffeine and 5 units/ml hyaluronidase to obtain a final concentration of 300 sperm/µl. Subsequently, oocytes were introduced to the droplets of sperm suspension (about 10 oocytes/drop). Spermatozoa and oocytes were coincubated for 8 h in a CO₂ incubator (5% CO₂, 95% humidified air, 39 °C). At 8 h after insemination, the survival of the oocytes was evaluated by morphological examination under a stereomicroscope. Oocytes with a normal spherical shape and a visible perivitelline space were considered to be live oocytes and were selected for further investigation. Surviving oocytes were cultured for 192 h in 50 µl of PZM-5 [18] covered with mineral oil under a gas phase of 5% CO₂, 5% O₂ and 90% N₂ with high humidity at 39 °C. At 48 h after insemination, cleaved embryos were transferred to a fresh culture medium. Cleavage and development to the 8-cell or more advanced stages, to the morula stage and to the blastocyst stage were observed at 48, 96, 96–120 and 120–192 h after insemination, respectively, under an inverted microscope.

Table 1. In vitro development of delipated, vitrified porcine oocytes following IVF

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No of oocytes examined</th>
<th>No. (%) of oocytes survived<sup>a</sup></th>
<th>No. (%) of oocytes developed<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Delipation</td>
<td>Vitrification</td>
<td>≥2 cell (48 h)<sup>c</sup></td>
<td>≥8 cell (96 h)<sup>c</sup></td>
</tr>
<tr>
<td>– –</td>
<td>130</td>
<td>130 (100)<sup>d</sup></td>
<td>89 (68.5)<sup>d</sup></td>
</tr>
<tr>
<td>+ +</td>
<td>61</td>
<td>34 (55.7)<sup>e</sup></td>
<td>12 (35.3)<sup>e</sup></td>
</tr>
<tr>
<td>+ –</td>
<td>57</td>
<td>57 (100)<sup>d</sup></td>
<td>37 (64.9)<sup>d</sup></td>
</tr>
</tbody>
</table>

^aSurvival of the vitrified-warmed oocytes was judged by their morphological appearance at 8 h after insemination. ^bThe percentage of oocytes developing to each stage is shown as the number of surviving oocytes. ^cHours after insemination. ^{d–g}Values in the same column with different superscripts are significantly different (P < 0.05 for f and g, and P < 0.01 for d and e). Experiments were performed at least five times.

Statistical analysis

Percentage data were subjected to an arcsine transformation and analyzed by one-way ANOVA. Treatment differences were determined using Tukey’s multiple comparison test.

Results

The results of this study are presented in Table 1. The survival rate of delipated, vitrified oocytes was significantly lower than that of control oocytes (55.7% vs. 100%, P < 0.01). When surviving oocytes were cultured in vitro, the delipated, vitrified oocytes showed significantly lower rates of cleavage (35.3%) and development to the 8-cell or more advanced stages (20.6%), morula stage (14.7%) and blastocyst stage (5.9%) than those of the control oocytes. On the other hand, delipation treatment did not have a negative effect on the developmental competence. There were no differences between delipated and control oocytes in the rates of cleavage and development to the 8-cell or more advanced stages, morula stage and blastocyst stage.

Discussion

To our knowledge, there have been very few reports on the developmental competence of delipated porcine IVM oocytes at the MII stage after cryopreservation. In this study, we investigated the in vitro developmental competence of delipated, vitrified porcine IVM oocytes. As shown in Table 1, delipated, vitrified porcine IVM oocytes could develop to the blastocyst stage following IVF; however, the survivability and developmental competence of delipated, vitrified oocytes were significantly lower than those of the control oocytes (untreated oocytes). The survival rate of delipated, vitrified oocytes at 8 h after insemination was lower than expected. One
of the characteristics of the vitrification system used in this study is that the vitrification solution did not contain bovine serum. Cryopreservation solutions are normally supplemented with fetal calf serum or bovine serum albumin as a source of protein, which stabilizes the plasma membrane when added at a high concentration [19] and reduces the amount of visible ice in the vitrification medium [20]. In this study, it is thought that the plasma membrane of oocytes became unstable due to the invasive nature of delipation treatment. Thus, bovine serum may be useful as a supplement for vitrification solutions when delipated porcine IVM oocytes are cryopreserved using our vitrification system.

Moreover, the results of this study indicate that even when the lipid droplets were removed from oocytes, the developmental competence of cryopreserved porcine IVM oocytes did not improve. It has been reported that the cyrotolerance of porcine germinal vesicle (GV)-stage oocytes [8, 9] and early-stage embryos [5, 10] can be dramatically increased by delipation. On the other hand, in the cryopreservation of porcine IVM oocytes, Ogawa et al. [21] demonstrated that after a combination of cytoplasmic lipid removal and treatment with a microtubule stabilizer, paclitaxel, vitrified porcine IVM oocytes could efficiently develop to the blastocyst stage. However, in their study, the blastocyst formation rate of the delipation-and-paclitaxel group was significantly lower than that of the intact control oocytes. Therefore, for porcine, it appears difficult to achieve a level of developmental competence for vitrified IVM oocytes that is comparable to that of fresh IVM oocytes. Moreover, as shown in Table 1, the cleavage rate of the delipation-vitrification group was significantly lower than that of the controls (untreated oocytes). Previously, we reported that the fertility of delipated porcine IVM oocytes cryopreserved by our vitrification system was not different from that of undelipated fresh oocytes [13]. In this study, although we did not confirm the fertility of the delipated, vitrified oocytes, the low cleavage rate of the vitrified oocytes was probably a consequence of the reduction of developmental competence caused by the cryopreservation, not a reduction in fertility.

As shown in Table 1, the delipation from porcine IVM oocytes did not have a negative effect on the developmental competence with respect to the blastocyst formation rate. The present results raise the question of the roles of cytoplasmic droplets in porcine in vitro production (IVP) systems. Cytoplasmic lipid droplets in mammalian oocytes or embryos are thought to play important roles in energy metabolism during oocyte maturation, fertilization and early embryonic development [22]. On the other hand, the rate of nuclear maturation of porcine delipated GV-stage oocytes was not different from that of undelipated, fresh oocytes [8]. Moreover, it has been shown that the rate of development to the blastocyst stage and blastocyst cell number of parthenogenetic embryos at the four- to eight-cell stage following delipation are comparable to those of undelipated embryos [11]. Although the roles of lipid droplets in the cytoplasm for porcine IVP systems were not clarified in this study, their roles in porcine IVP are intriguing. Recently, it has been demonstrated that porcine MII-stage oocytes can be cryopreserved while retaining their ability to develop into fetuses [21]. In this study, no data were collected regarding the ability of embryos derived from delipated porcine IVM oocytes to develop into live piglets. Therefore, further investigation is required to evaluate the full-term development of embryos derived from such oocytes.

In conclusion, we have shown that delipated, vitrified porcine IVM oocytes can develop to the blastocyst stage following IVF; however, the blastocyst formation rate was low. Thus, further study is required to improve the cyrotolerance of delipated porcine IVM oocytes.

References