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Abstract:	Epigenetic modification is the main mecha-
nism of transcriptional regulation that does not involve 
changes in DNA sequences, such as DNA methylation, 
acetylation and methylation of the N-terminal tail of his-
tone. Recently, next-generation sequencing technology 
has provided detailed information about the DNA methyl-
ation status of the whole mouse genome in full-grown oo-
cytes. However, it is still very hard to read histone codes 
in oocytes because a large number of cells (1 × 106 cells 
or more) are needed for such analyses. In addition, infor-
mation that can be obtained from immunostaining analy-
sis is limited to a global image of histone modification in 
oocytes. Consequently, a complete picture of individual 
epigenetic modifications in mouse oocytes has not yet 
been understood. In this paper, the DNA methylation re-
quired for functional oocytes is reviewed. The differences 
in DNA methylation between oocytes grown in vivo and 
in vitro, and the potential for manipulating epigenetic 
modifications in oocytes are also discussed.
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DNA Methylation during Mouse Oogenesis

DNA methylation mainly occurs at the cytosine resi-
dues of CpG dinucleotides [1]. Non-CpG methylation is 
observed to a lesser extent, approximately 10% overall 
in germ cells [2, 3]. In general, DNA methylation in the 
promoter region suppresses gene transcription, whereas 
DNA methylation in the transcribed (gene body) regions 
positively correlates with gene expression [4–7]. DNA 
methylation is catalyzed by the DNA methyltransferas-
es (DNMTs) DNMT1, DNMT3A, and DNMT3B, and the 
non-enzymatic cofactor DNMT3L [1]. DNMT1 is known 
as a maintenance methylase through which the methyla-
tion patterns of parent strands are clonally transmitted 

to daughter strands during DNA replication. DNMT3A 
and DNMT3B are de novo methylases that primarily de-
termine the methylation patterns of naïve DNA strands. 
DNMT3L has no catalytic activity by itself but cooperates 
with other DNMT3 family members to carry out de novo 
methylation.
In non-growing oocytes, the global DNA methylation 

level is 2.3%, but this gradually increases as the oo-
cytes grow [3, 8]. When an oocyte reaches the full-grown 
stage, genomic DNA is bisected into hypomethylated 
(less than 10% of CpG sites are methylated) and hyper-
methylated (more than 90% of CpG sites are methylated) 
regions, and the mean global DNA methylation level is 
approximately 40% [4]. Deletion of Dnmt3a or Dnmt3l 
but not Dnmt1 and Dnmt3b during oogenesis leads to 
global hypomethylation in the full-grown oocytes. The 
DNA methylation level is decreased to 6.3% (Dnmt3a − 
/−) and to 3.2% (Dnmt3l − /−), which is similar to that of 
non-growing oocytes [3]. However, full-grown oocytes 
that lack DNMT3A and DNMT3L appear normal and can 
successfully undergo meiosis, early cleavage, and im-
plantation [9–11]. Therefore, DNA methylation appears 
to be dispensable for oogenesis. On the other hand, dur-
ing spermatogenesis, most of the CpG sites are hyper-
methylated and the mean global DNA methylation level 
in sperm is approximately 90%. Deletion of Dnmt3a or 
Dnmt3l during spermatogenesis results in azoospermia 
due to genome instability induced by the activation of ret-
rotransposons [12]. Thus, the role of DNA methylation is 
quite different in oocytes and sperm.
The most significant role of DNA methylation during 

oogenesis is genomic imprinting. DNMT3A and DNMT3L 
are essential for de novo methylation at the imprinted re-
gions in both the male and female germlines [9–11]. In 
mouse zygotes, the sperm–derived hypermethylated ge-
nome is actively demethylated [13]. The zygotic genome 
is passively demethylated through cell division, and con-
sequently, the methylation level of the whole genome is 
decreased to the basal level at the blastocyst stage. Fol-
lowing genome-wide de novo methylation, the embryonic 
genome reacquires DNA methylation [14, 15]. However, 
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imprinted regions are not affected by these methylation 
dynamics. The oocyte- or sperm-specific methylation 
status of the imprinted loci is protected against genome-
wide demethylation at fertilization and against de novo 
methylation at gastrulation. The methylation status is 
maintained throughout ontogenesis except for germ cell 
lineage, resulting in parent-of-origin-specific gene ex-
pression [16].
In mice, oocyte-specific methylation imprints are ab-

sent in non-growing oocytes but are gradually acquired 
during oocyte growth [17, 18]. Therefore, the imprinting 
status differs among the oocytes in the ovary. In contrast, 
all of the male germ cells in the testis possess integral 
sperm-specific methylation imprints since sperm-specific 
DNA methylation imprints are established in the prosper-
matogonia during the perinatal stage [19, 20]. Differential-
ly methylated regions between the germ lines have been 
identified at imprinted loci: 19 of them are methylated in 
oogenesis, and 3 of them are methylated in spermatogen-
esis [4]. Loss of imprinted methylation leads to embryonic 
lethality, disorders, or phenotypic abnormalities [9–11, 
21–23]. Thus, DNA methylation imprints are essential for 
producing functional germ cells in mammals.
Beckwith-Widemann syndrome, Silver-Russell syn-

drome, and transient neonatal diabetes mellitus 1 are 
the most well-known imprinting disorders. Some patients 
with such imprinting disorders exhibit loss of methylation 
imprints (LOM). The most common cause of LOM is the 
ZFP57 mutation, although there are exceptions [24–26]. 
Recently, an association between epigenetic mutation 
and artificial reproductive technology (ART) has also 
been suggested, which will be discussed below [27].

Culture and Epigenetic Mutation

Methylation of DNA and histone requires S-adenosyl-
methionine (SAM) to act as a methyl donor. Methionine 
is an essential amino acid that cannot be synthesized in 
vivo. A mammal obtains methionine from food which is 
then converted to SAM by methionine adenosyltrans-
ferase [28]. In culture, cells uptake methionine from the 
medium and supplements such as fetal bovine serum 
(FBS) and bovine serum albumin. Epigenetic altera-
tions caused by culture and manipulation of oocytes are 
thought to occur due to an excess of SAM, factors of the 
ectopic environment, or both. Epigenetic mutation pos-
sibly occurs during gametogenesis and embryogenesis; 
however, the specific cause is not known.
An earlier report focused on epigenetic mutation in bo-

vine and ovine embryos produced in vitro. Bovine and 
ovine embryos derived from in vitro maturation (IVM), in 

vitro fertilization (IVF), and culture of cleavage-stage em-
bryos often exhibit large offspring syndrome [29]. This 
has been attributed to loss of methylation at the IGF2R 
locus and the consequent reduced expression of IGF2R 
in pre-implantation embryos in sheep [30]. Since the 
publication of this earlier study, the long-term effects of 
events occurring at the early developmental stages of 
embryos which are detrimental to late ontogeny have re-
ceived substantial research attention. We also examined 
the long-term effect of in vitro growth (IVG) of mouse oo-
cytes on their subsequent development [31]. IVG of oo-
cytes may provide a new source of functional oocytes; 
however, it is difficult to produce offspring successfully 
from IVG oocytes because of their cytoplasmic deficien-
cies [31, 32]. Therefore, we used a nuclear transfer tech-
nique in which the nuclei of IVG oocytes were transferred 
into enucleated oocytes that were grown in vivo, and the 
developmental ability of these reconstituted oocytes was 
investigated following IVM, IVF, and embryo transfer 
(Fig. 1). In this strategy, the cytoplasmic deficiencies of 
IVG oocytes are negligible, and the influence of IVG on 
the oocyte genome can be evaluated. Full-grown, grow-
ing, and non-growing oocytes were cultured for 0, 11, and 
21 days, respectively. Our results show that there were 
no significant differences in developmental ability among 
embryos reconstituted with nuclei of the oocytes cultured 
for 0, 11, or 21 days. More than 90% of the embryos de-
veloped to the blastocyst stage and approximately 30% 
of the embryos developed into pups in all experimental 
groups. The competency of the reconstituted oocytes 
was unaffected by the duration of culture. No obvious 
abnormalities were observed in any of the pups and 
placentae; however, the pups and placentae from the 
reconstituted eggs that contained the nuclei of oocytes 
cultured for 21 days were heavier than those obtained 
from non-manipulated eggs (IVF control). No significant 
differences were observed among the other experimen-
tal groups (Fig. 1) [31]. This suggests that the overgrowth 
phenotype arises from long-term culture and/or an ecto-
pic environment during an earlier stage of oocyte growth. 
In addition, to analyze the DNA methylation status at im-
printed loci in IVG oocytes, ovaries from newborn mice, 
which contain only non-growing oocytes, were cultured 
for 10 days and then the obtained IVG oocytes were 
compared with growing oocytes from 10-day-old mice 
(Fig. 2). The methylation levels of IVG oocytes with diam-
eters of 45–50 µm and 50–55 µm were equal to those of 
size-matched groups of growing oocytes from 10-day-
old mice [23]. Considering that oocyte-specific methyla-
tion imprints are established during oocyte growth, DNA 
methylation at imprinted loci might be susceptible to the 
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IVG. However, we were not able to obtain evidence to 
directly support this hypothesis, which is consistent with 
the results reported by Smitz et al. [33]. In contrast, some 
studies have shown that superovulation and/or culture of 
embryos affect the imprinted expression and methylation 
status in oocytes, embryos, and/or placentae [34–36]. 
Currently, there is not enough evidence to conclude that 
epigenetic mutation is due to ART. To understand this 
relationship better, epigenetic information of the whole 
genome in a large population of experimental animals 
produced by several kinds of ART is required.

Potential for Artificial Control of  
Epigenetic Modification

As described above, oocyte-specific methylation im-
prints are established during oocyte growth, which re-
quire DNMT3A and DNMT3L [9–11]. Oocyte-specific 
methylation imprints are absent in non-growing oocytes 
that lack DNMT3A and DNMT3L expression [37]. The 
expression levels of DNMT3A and DNMT3L gradually in-
crease as the oocytes grow (Fig. 3). These facts led us to 
hypothesize that one reason for the lack of oocyte-spe-
cific methylation imprints in non-growing oocytes might 

Fig. 1.	 Schematic representation of the experimental design used to examine the long-term effect of the in vitro 
growth (IVG) of mouse oocytes on their ontogeny.
Ovaries isolated from 0-day-old mice were cultured for 10 days on Transwell membranes in minimal essen-
tial medium (MEM)-alpha supplemented with 10% fetal bovine serum (FBS). On day 10, secondary follicles 
were isolated from ovaries and subjected to follicular culture. The secondary follicles were isolated from in 
vitro-derived ovaries and ovaries from 10-day-old mice. These follicles were cultured for 11 days in MEM-al-
pha supplemented with 5% FBS, 0.1 IU/ml follicle-stimulating hormone, 5 µg/ml insulin, 5 µg/ml transferrin, 
and 5 ng/ml selenium. Full-grown oocytes at the germinal vesicle (GV) stage were isolated from the resultant 
follicles and Graafian follicles of adult mice. The GVs of IVG oocytes were transferred to the cytoplasm of 
GV oocytes that were isolated from adult mice. As a control, GVs were transferred between GV oocytes from 
adult mice (NT control). After in vitro maturation, chromosomes at the metaphase in the second meiosis 
(MII) were transferred from the reconstituted oocytes to the ovulated and enucleated MII-stage oocytes to 
yield cytoplasmic competency. As another control, MII oocytes were subjected to in vitro fertilization (IVF 
control). This scheme is a simplified and modified version of the original experimental design [31].
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be the absence of DNMT3A and DNMT3L expression. To 
test this hypothesis, we produced transgenic (Tg) mice to 
induce overexpression of DNMT3A and DNMT3L prema-
turely in oogenesis [37]. Western blot analysis showed 
that DNMT3A and DNMT3L expression was successfully 
induced in non-growing oocytes derived from Tg mice as 
well as in full-grown oocytes. However, oocyte-specific 
methylation imprints were still lacking in the non-growing 
oocytes of Tg mice. This indicates that the presence of 

DNMT3A and DNMT3L is necessary but not sufficient 
for the establishment of oocyte-specific methylation im-
prints. One possible explanation for the inability of DN-
MT3A to catalyze de novo methylation at imprinted loci is 
a resistant state at the imprinted loci which prevents the 
actions of DNMT3A and DNMT3L. Although co-expres-
sion of DNMT3A and DNMT3L is restricted to germ cells, 
their presence alone is not sufficient to control imprint 
acquisition in oocytes (Figs. 3 and 5) [37].
On the other hand, excess of DNMT3A and DNMT3L 

accelerates the establishment of methylation imprints 
during oocyte growth. Four of six analyzed imprinted re-
gions were hypermethylated in the growing oocytes de-
rived from Tg mice at a much earlier stage than those 
derived from wild-type mice. To determine whether these 
accelerated methylation imprints in the growing oocytes 
of Tg mice were functional genomic imprinting after fer-
tilization, we produced fertilized embryos containing 
nuclei from growing oocytes of Tg mice, and examined 
allele-specific DNA methylation states and expression 
of imprinted genes in the embryos at the mid-gestational 
stage [37]. Our results showed that maternal-specific hy-
permethylation patterns derived from Tg growing oocytes 
were maintained in the embryos at the Igf2r locus. Activa-
tion of maternal expression of Igf2r was also observed 
in the embryos containing the genome from Tg growing 
oocytes, but not in the embryos containing the genome 
from growing oocytes of wild-type mice. In contrast, loss 
of methylation at the Lit1, Zac1, and Impact loci was ob-
served in the embryos containing the genome from Tg 
growing oocytes as well as in those containing the ge-
nome from growing oocytes of wild-type mice (Fig. 4). Al-
lele-specific expression was uncontrolled at the Lit1, Zac1 
and Impact loci. Moreover, DNA methylation mosaicism 
at maternal alleles was observed in embryos, indicating 
that accelerated acquisition of methylation imprints are 
passively erased after fertilization. Therefore, DNA meth-
ylation at imprinted loci acquired during oocyte growth is 
insufficient, suggesting that maintenance mechanisms 
for oocyte-specific DNA methylation imprints, presum-
ably additional epigenetic modifications, are required for 
functional genomic imprinting (Fig. 5) [37].

Epigenetic Modification other than  
DNA Methylation

KDM1B, a histone H3 lysine4 (H3K4) demethylase 
has been found to be essential for DNA methylation im-
prints at Grb10, Mest, Zac1, and Impact, but not at Igf2r, 
Lit1, and Snrpn [38]. This is consistent with the fact that 
DNMT3L interacts specifically with unmethylated histone 

Fig. 2.	 DNA methylation levels at imprinted loci in growing 
oocytes derived from 10-day-old mice (in vivo) and 
ovaries after 10 days of culture (in vitro).
Methylation imprints of Igf2r, Lit1, Zac1, Snrpn, and 
Mest are established during oogenesis, whereas the 
methylation imprint of H19 is established during sper-
matogenesis. Igf2r, Lit1, Zac1, Snrpn, and Mest are 
fully methylated (approximately 100%), whereas H19 is 
not methylated in full-grown oocytes of adult mice. No 
significant alteration of DNA methylation levels was 
observed at any of the imprinted loci.
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Fig. 3.	 Expression of DNA methyltransferases and the establishment of DNA methyla-
tion imprints during oocyte growth.
The bold line indicates expression levels of DNMT3A and DNMT3L. Open 
circles represent unmethylated CpG sites at certain imprinted loci. Filled circles 
represent methylated CpG sites at certain imprinted loci.

Fig. 4.	 Function of DNA methylation imprints during embryogenesis.
Functional methylation imprints from full-grown oocytes were maintained after 
fertilization and cell division (top); however, embryos containing the genome of 
growing oocytes derived from Tg mice showed loss of imprints sometime during 
embryogenesis, in spite of the acquisition of oocyte-specific DNA methylation 
imprints (bottom).
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H3K4 in in vitro interaction assays [39, 40]. Furthermore, 
protection against DNA demethylation at imprinted loci 
after fertilization was achieved by PGC7, H3K9 dimethyl-
ation, and ZFP57 [24–26, 41, 42]. Thus, mechanisms for 
the establishment of functional imprinting are complex 
and not yet fully elucidated.
Recently, histone deacetylase inhibitors have been 

evaluated as potential therapeutic drugs for cancer. An 
oral histone deacetylase inhibitor drug has been approved 
by United States Food and Drug Administration for use in 
cancer therapy. This is a challenge to the control of epi-
genetic modifications. Further studies are needed to ob-

tain a better understanding of the epigenetic modifications 
occurring during oogenesis and their potential contribu-
tions to the development of reproductive medicine.
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Fig. 5.	 Putative mechanisms behind the establishment of functional imprinting during oocyte growth.
Acquisition of DNA methylation imprints is modulated by mechanisms that control the shift 
from the resistant to the permissive chromatin state at imprinted loci. The transition to a permis-
sive state occurs in the early to middle oocyte growth phase. Unknown factor(s), X, in addition 
to KDM1B regulate extension of the permissive state for the DNA methyltransferases DNMT3A 
and DNMT3L (DNMTs). Methylation imprints may recruit additional epigenetic modifications, 
such as H3K9 dimethylation, in the late oocyte growth phase. Finally, oocytes establish func-
tional imprinting until reaching the full-grown stage, and methylation imprints protect against 
DNA demethylation after fertilization.
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