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Abstract:	Systematic studies of mouse embryo culture 
beginning in 1949 led to an understanding of essential 
medium components for early mammalian embryos, and 
embryo culture from the zygote to the blastocyst stage 
was achieved in 1968. Since then, medium components 
that are either beneficial or detrimental for embryo cul-
ture have been identified. A variety of culture media that 
mimic the female reproductive tract, such as human tubal 
fluid medium and sequential media, were developed from 
the 1970s to the 1990s, and a single medium in which 
the concentrations of components were determined by a 
simplex optimization method was introduced for clinical 
use in 2002. While either sequential media or a single 
medium is currently used in most cases, no conclusion 
has yet been reached as to which of the two approaches 
is the best. That we are now easily able to culture em-
bryos is the result of the work of pioneers. This review 
presents a chronological overview of media development 
from initial attempts at mouse embryo culture using syn-
thetic media to the human embryo culture media used 
today. It also presents the characteristics of sequential 
media and a single medium. Finally, problems observed 
with current embryo culture media are discussed, along 
with future development in this area.
Key words:	 Preimplantation embryo culture, Sequential 
media, Single medium, Albumin, Growth factors

Introduction

In 1882, the first tissue culture medium was success-
fully used by Ringer [1, 2]. He formulated a balanced 
salt solution based on the inorganic salt compositions 
of blood serum to maintain a frog heart beating in vitro. 
His studies showed that animal tissues could survive in 

vitro if the osmotic pressure, pH, and inorganic ion con-
centrations were at physiological levels. Subsequently, 
Ringer’s solution was modified, and a variety of balanced 
salt solutions were developed [3–9], including Tyrode’s 
solution and Krebs–Ringer–bicarbonate (KRB) solution 
(Fig. 1). In 1907, Harrison et al. [10] were the first to suc-
cessfully culture animal somatic cells using lymph as a 
medium, and they used it to observe the outgrowth of 
frog embryo nerve fibers in vitro. Their results acceler-
ated animal cell culture study, including the culture of 
preimplantation embryos from various animal species 
(e.g., guinea pig and rabbit [11–14], mouse [15], monkey 
[16], and human [17, 18]), using natural media such as 
lymph [19] (Table 1). However, the use of natural media 
composed of unknown components presented problems 
in terms of experimental reproducibility, and it does not 
enable the identification of the components necessary 
for the developing embryo in vitro. Thus, there was a shift 
to synthetic media based on balanced salt solutions [20] 
(Table 1).

Whitten [21–23] developed mouse embryo culture 
media based on KRB solution, and was able to repro-
duce embryo development throughout the preimplanta-
tion period in vitro. Using Tyrode’s solution, Yanagima-
chi and Chang [24] succeeded in inducing mammalian 
sperm capacitation in vitro. Their methods were applied 
by Edwards and Steptoe et al. [25] to human in vitro fer-
tilization (IVF), and were linked to successes in assisted 
reproductive technology (ART) in 1978 [26]. According 
to the concept that the reproductive environment should 
be mimicked during embryo culture in vitro(the so-called 
“back to nature” approach [27]), human oviduct and uter-
ine fluids were analyzed, and human tubal fluid (HTF) 
[28] and Gardner’s G1/G2 media [29] were developed. 
Of these, media having similar characteristics to G1/G2 
have become known as “sequential” or “two-step” media. 
Meanwhile, in another approach, there was no attempt 
to mimic in vivo environments, but rather the appropri-
ate concentration of each medium component in vitro 
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was determined by sequential simplex optimization us-
ing mouse embryo assays (the so-called “let the embryo 
choose” approach [27]). This approach led to the devel-
opment of potassium simplex optimized medium (KSOM) 
for mouse embryo culture [30]. This medium and the 
KSOMAA medium [31], which is KSOM supplemented 
with amino acids, are effective not only for the culture of 
mouse embryos, but also for human embryo culture [32]. 
Under the trademark of Global, KSOMAA is widely used 
in human ART. A medium having characteristics similar 
to KSOMAA is currently called a “single medium” (or a 
“single-step medium,” or a “one-step medium”).

The following chapter presents a chronological over-
view of media development from initial attempts at 
mouse embryo culture using synthetic media to the hu-
man embryo culture media used today, to understand 
how pioneers cultured preimplantation embryos and 
what medium components are either essential or detri-
mental. The second chapter presents the characteristics 
of sequential media and single media to indicate which 
approach is best for each laboratory. The final chapter 
discusses problems observed with current embryo cul-
ture media to assist the development of further optimized 
embryo culture media.

The Development of Embryo Culture Media

The trajectory towards successful embryo culture
Mouse embryos

Systematic research using synthetic media began in 
1949 with the use of mouse embryos. Hammond [33], 
using a simple medium of NaCl, KCl, CaCl2, MgCl2, and 
glucose supplemented with egg white and egg yolk, suc-
cessfully developed 8-cell-stage mouse embryos, that 
were collected from a fallopian tube, to the blastocyst 
stage. However, the blastocyst formation rates were 
low, and it was also difficult to develop embryos before 
the 8-cell stage with this medium. In 1956, Whitten [21] 
showed that the pH of Hammond’s medium rose rapidly 
from 7.0 to 7.8, and confirmed that embryos do not un-
dergo cleavage at pH 7.7 or above. He also found that bo-
vine serum albumin (BSA) could be used instead of egg 
whites, and he used KRB solution with glucose, BSA, 
and antibiotics as an embryo culture medium because 
this solution had pH buffer capacity. This medium greatly 
improved embryo development from the 8-cell stage to 
the blastocyst stage, and at this time, it became clear that 
glucose was necessary for development from the 8-cell 
stage. McLaren and Biggers [34] transplanted blasto-
cysts cultured from 8-cell-stage embryos using Whitten’s 
method to a surrogate mother and successfully obtained 

viable young. In 1957, Whitten [22] found that adding lac-
tate to the medium enabled embryos to progress from 
the 2-cell stage to the blastocyst stage, but did not en-
able embryos to develop from the 1-cell stage.

Brinster made several major contributions to medium 
development which enabled culture from the 1-cell stage 
to the 2-cell stage in synthetic media. He determined ap-
propriate pH levels and osmotic pressure for embryo cul-
ture and investigated the effects of the energy substrates, 
BSA, and amino acids that are used to supplement em-
bryo culture media [35–37]. Brinster also discovered that 
the 2-cell-stage mouse embryo did not utilize glucose as 
an energy source, and that it required either pyruvate, 
lactate, oxaloacetate, or phosphoenolpyruvate [36]. Be-
cause the best results were obtained using a combina-
tion of pyruvate and lactate [38, 39], he developed Brin-
ster’s medium for ovum culture 2 (BMOC2) containing 
pyruvate and lactate. This improved the development of 
embryos from the 2-cell stage to the blastocyst stage. 
Subsequently, Whittingham and Biggers [40] cultured 
embryos from the 1-cell to the 2-cell stage in a medi-
um supplemented with pyruvate and lactate, and then 
obtained blastocysts within fallopian tubes undergoing 
organ culture. Furthermore, they showed that pyruvate, 
but not lactate, acted as an energy source for oocyte 
maturation and the first cleavage division, although lac-
tate could act as an energy source for oocytes and fertil-
ized eggs indirectly through cumulus cells [41]. Finally, in 
1968 Whitten and Biggers [23] successfully reproduced 
all preimplantation development stages in vitro using a 
medium containing BSA, pyruvate, lactate, and glucose. 
The medium had lower osmolarity than previous media. 
However, Whitten and Biggers were only able to culture 
fertilized eggs from F1 hybrid mice, and most embryos 
from other strains of mice showed developmental arrest 
at the 2-cell stage in this medium. This phenomenon is 
known as the “2-cell block”.
Human embryo

In 1969, around the time of Whitten’s success (Fig. 1), 
the research group of Edwards and Steptoe [25, 42] re-
ported the first indubitable evidence of fertilization of hu-
man ova using a medium based on a modification of Ty-
rode’s solution. This medium was selected based on the 
hamster IVF successes of Yanagimachi and Chang [24, 
43]. Subsequently, in order to culture human fertilized 
eggs, Edwards et al. [44] screened five types of exist-
ing media, including Whitten’s medium, and showed that 
Ham’s F-10 medium with 20% fetal calf serum (FCS) was 
suitable for human embryo culture. In 1971, Steptoe et 
al. [45] succeeded in culturing human embryos from the 
zygote to the blastocyst stage. Although Seitz et al. [46], 
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Fig. 1.	 Timeline from successful animal tissue culture to the appearance of a single medium. After the successful culture of animal 
tissues and cells, experiments were performed to culture a variety of animal embryos in natural media, while at the same 
time, balanced salt solutions were developed. Thereafter, progress was made on the study of mouse embryo culture using 
synthetic media, and based on successes in mouse embryo culture, a variety of human embryo culture media were developed.

Table 1.	 Categories of animal cell culture media

Categories Definitions Types Examples

Natural 
media

These media consist 
of natural biological 
substances such as 
plasma, serum, and 
embryo extract.

Coagulant or clots Plasma separated from heparinized blood, serum, and fibrinogen

Biological fluids Plasma, serum, lymph, amniotic fluid, and pleural fluid

Tissue extracts Extracts of chicken embryos, liver, spleen, and bone marrow 
extract

Synthetic 
media

These media con-
tain partly or fully 
defined components, 
like a balanced salt 
solution, and organic 
compounds such 
as amino acids and 
vitamins.

Serum-containing media Human, bovine, equine or other serum is used as a supplement

Serum-free media Crude protein fractions such as serum albumin, α, and β-globulin 
are used as supplements

Protein-free media Undefined components such as peptide fractions (protein hydro-
lysates) used as supplements

Chemically defined media Undefined components such as crude protein fractions, hydroly-
sates, and tissue extracts are not appropriate supplements. Highly 
purified components such as recombinant proteins are appropri-
ate supplements.
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De Kretzer et al. [47], Kubo [48], and Lopata et al. [49, 
50] made advances in the investigation of human IVF 
embryo transfer (ET) using Ham’s F-10 medium, in 1978, 
Edwards and Steptoe [26] were the first to succeed.

The composition of Ham’s F-10 medium is complex [51] 
(Table 2). It was originally developed in 1963, not for em-
bryo culture, but for the culture of Chinese hamster ovary 
cells. Edwards et al. began studying human embryo cul-
ture using Ham’s F-10 after the success of Daniel and 
Olson with rabbit embryos [52]. However, it was shown 
that hypoxanthine and trace elements included in Ham’s 
F-10 medium had deleterious effects on embryos be-
cause they induce the production of reactive oxygen spe-
cies (ROS) [53–56], and the use of this medium for hu-
man embryo culture was gradually discontinued. Around 
that time, in addition to Ham’s F-10, a variety of media 
were used in attempts to culture human embryos, includ-
ing Earle’s solution with pyruvate [57], mouse embryo 
culture media, and a modification of Tyrode’s solution 
known as T6 medium [58]. However, none of these me-
dia generated satisfactory results. Furthermore, although 
some positive results were obtained from the coculture 
of somatic cells of oviduct and uterine origin [59–61], this 
strategy did not become popular because of issues of 
complexity and reproducibility.

Overcoming the 2-cell block
After the successes of Whitten, the M16 medium [62], 

Biggers–Whitten–Whittingham (BWW) medium [63], 
and Hoppe and Pitts’ medium [64] were developed (Fig. 
1). However, with the exception of embryos from a few 
outbred or hybrid strains of mice, the 2-cell block could 
not be overcome. Phenomena resembling the 2-cell 
block were found at the 8–16-cell stage in bovine and 
sheep embryos, at the 4–8-cell stage in porcine and hu-
man embryos, and at the 2-cell stage in hamster embry-
os [65, 66]. Various attempts were made to identify ways 
of breaking through this block.

In 1977, Abramczuk et al. [67] found that the culture of 
fertilized mouse eggs on a single-layer sheet of somatic 
cells resolved the 2-cell block problem. In their search for 
causal agents, they found that the addition of ethylene-
diaminetetraacetic acid (EDTA), a divalent cation chelat-
ing agent, was effective at overcoming the 2-cell block 
in ICR and C57BL/6 mouse embryos. In 1988, Schini 
and Bavister [65] showed that the 2-cell block in hamster 
embryos was caused by glucose and phosphate. Based 
on these reports, Chatot et al. [68] developed Chatot–
Ziomek–Bavister (CZB) medium with EDTA, substituted 
glutamine for glucose as a supplement for BMOC2, and 
eliminated phosphate. This medium enabled the culture 
of a variety of embryos from various strains of mice for 

Table 2.	 Human embryo culture medium composition

1963 1985 1995 2002

Ham’s 
F-10 HTF

Sequential media Single medium

G1 G2 Global

Inorganic salts ○ ○ ○ ○ ○
Energy substrates*  
  (mmol/L)

Glucose 6.1 2.8 0.5 3.2 0.2
Pyruvate 1.0 0.3 0.3 0.1 0.2
Lactate – 21.4 10.5 5.9 10.0

Amino acids** Essential ○ – –*** ○ ○
Nonessential ○ – ○ ○ ○

Vitamins ○ – – –*** –
Trace elements ○ – – – –
Nucleic acid precursors ○ – – – –
Chelators – – ○ – ○
Antibiotic agents ○ ○ ○ ○ ○
pH indicators**** ○ ○ ○ ○ ○
Serum ○ – – – –
Serum albumin – ○ ○ ○ ○

*Energy substrate concentrations in currently commercially available sequential media and single media 
are reported by Morbeck et al. [97]. **Amino acid concentrations in sequential media and single media 
are according to Eagle’s MEM amino acids [87] (Table 3). ***Although not present in G1/G2 medium 
[216], these may be included in recent sequential media. ****Some manufacturers formulate embryo cul-
ture media without a pH indicator.
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which the 2-cell block had been confirmed, but when 
developing “blocking strain” embryos from the morula to 
blastocyst stage, it was necessary to add glucose [69].

Development of media mimicking in vivo environments 
(the “back to nature” approach)

From about 1970, progress was made on composi-
tional analyses of oviduct fluid and uterine fluid based 
on the “back to nature” approach. Synthetic oviduct fluid 
medium [70] based on sheep oviduct fluid, B2 medium 
[71] based on bovine oviduct/uterine fluid, HTF [28] 
based on human oviduct fluid, mouse tubal fluid medium 
[72] based on mouse oviduct fluid, and porcine zygote 
medium [73, 74] based on porcine oviduct fluid were de-
veloped, among others. Of these, B2 is also known as 
the “French medium” [75] because it was widely used in 
France in the early days of human ART.

The composition of HTF is simple (Table 2). It is com-
posed of only inorganic salts, glucose, pyruvate, lactate, 
human serum albumin (HSA), and antibiotics. HTF was 
widely used in ART because of its ease of preparation 

and management. The composition of HTF was pro-
posed by Quinn in reference to the analysis of data from 
Lippes et al. [76] and Borland et al. [77] for inorganic salts 
and glucose in human oviduct fluid. However, the compo-
sition of HTF was dissimilar to the published analyses of 
the composition of oviduct fluid [27].

After the introduction of HTF, glucose and phosphate 
were reported as potentially toxic, not only for hamster 
and mouse embryos, but also for human cleavage-stage 
embryos [78, 79]. Therefore, Basal XI HTF [79]—a 
modified HTF medium wherein, as with CZB, glutamine 
was substituted for glucose, phosphate was eliminated, 
and EDTA was added—was developed. Preimplanta-
tion stage-1 (P1) medium [80] was also introduced, in 
which citrate and taurine, respectively, were substituted 
for EDTA and glutamine in Basal XI HTF. Nevertheless, 
blastocyst formation rates with these media were not 
fully satisfactory, and during this time, cleavage-stage 
embryo transfer was the main method of ART. In sub-
sequent studies, it was found that amino acids, vitamins, 
and EDTA supplementation ameliorated the toxicity of 

Table 3.	 Comparison of amino acid concentrations in Eagle's MEM and in embryo culture media (µmol/L)

1959 1995 2002

Eagle’s MEM 
amino acids

Sequential media Single medium

G1 G2 Global

Essential amino acids Arginine 600 0 600 300
Cystine 100 0 100 50
Glutamine 2000 1000 1000 1000*
Histidine 200 0 200 100
Isoleucine 400 0 400 200
Leucine 400 0 400 200
Lysine 400 0 400 200
Methionine 100 0 100 50
Phenylalanine 200 0 200 100
Threonine 400 0 400 200
Tryptophan 50 0 50 25
Tyrosine 200 0 200 100
Valine 400 0 400 200

Nonessential amino acids Alanine 100 100 100 50
Asparagine 100 100 100 50
Aspartate 100 100 100 50
Glycine 100 100 100 50
Glutamate 100 100 100 50
Proline 100 100 100 50
Serine 100 100 100 50

Other amino acid Taurine 0 100 0 0

Amino acid concentrations in currently commercially available sequential media and single medium are 
reported by Morbeck et al. [97]. *As a glycyl-glutamine supplement [217].
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glucose for cleavage-stage embryos [81, 82], and the 
toxicity did not occur so long as the medium composition 
was appropriate [83, 84]. Thus, media developed from 
P1 once again included glucose.

Gardner’s group [85] analyzed concentrations of glu-
cose, pyruvate, and lactate in human oviduct and uterine 
fluids and found that the energy substrate concentrations 
differed, corresponding with changes in the nutritional 
demand of the cleavage- and blastocyst-stage embryos. 
Gardner and Lane [81, 86] also reported that adding 
amino acids to embryo culture media had positive ef-
fects, despite essential amino acids in Eagle’s minimum 
essential medium (MEM) [87] inhibiting the development 
of cleavage-stage embryos, and EDTA inhibiting the de-
velopment of blastocyst-stage embryos. Based on these 
results, Gardner’s group [29] developed G1 and G2 as 
original sequential media in 1995 (Tables 2 and 3), in 
which energy substrates, amino acids, and EDTA com-
positions were sequentially modified from the cleavage 
stage (days 1–3) to the blastocyst stage (days 3–5/6). 
These media improved blastocyst formation rates, and 
blastocyst transfer became popular.

“Back to nature” approaches, including HTF and se-
quential media, are theoretically impressive. However, 
they have not been exhaustively analyzed and only a 
portion of the components in each medium reflects the 
concentrations in vivo, and analyses of human oviduct 
fluids have shown considerable differences [27]. Ad-
ditionally, an embryo in culture generally experiences 
stresses unique to the culture environment that it would 
not experience in the reproductive tract (such stresses 

include exposure to light and high oxygen concentrations 
in the atmosphere, sudden changes in pH and tempera-
ture, and the accumulation of waste materials in the cul-
ture medium). Thus, it cannot be stated that mimicking, 
per se, in vivo compositions is necessarily the optimal 
approach.

Development of media using sequential simplex optimi-
zation (the “let the embryo choose” approach)

Within the National Cooperative Program on Non-
Human In Vitro Fertilization and Preimplantation Devel-
opment (called the “Culture Club”), in the United States, 
Biggers’ group started to investigate optimized media via 
the use of a statistical approach, called the simplex opti-
mization method. This method uses a computer-assisted 
algorithm to search the highest point of a concentration–
response surface. Lawitts and Biggers [88] optimized the 
concentrations of 10 components (NaCl, KCl, KH2PO4, 
MgSO4, lactate, pyruvate, glucose, BSA, EDTA, and glu-
tamine) of CZB simultaneously using blastocyst forma-
tion rates in vitro for the response. In 1992, Lawitts and 
Biggers [89] reported simplex optimized medium (SOM) 
with reduced CZB concentrations of NaCl, KH2PO4, py-
ruvate, and glucose, and in 1993, KSOM [30] with in-
creased potassium concentration. Ho et al. [31] then de-
veloped KSOMAA supplemented with 0.5×MEM essential 
and nonessential amino acids and reported improved 
blastocyst formation rates and cell numbers. KSOM and 
KSOMAA are effective not only for the culture of mouse 
embryos but also for bovine [90–92], rabbit [93, 94], pig 
[95], monkey [96], and human embryos [32]. KSOMAA is 

Table 4.	 Characteristics of sequential media and single medium

Sequential media Single medium  
(renewed at Day 3)

Single medium  
(nonrenewable)

Environment changes at time of medium exchange (changes in 
medium composition, pH, temperature, gas phase, and expo-
sure to light)

Large Medium None

Autocrine factors Eliminated with  
medium exchange

Eliminated with  
medium exchange

Accumulated

Waste and toxic materials Eliminated with  
medium exchange

Eliminated with  
medium exchange

Accumulated

Number of embryo culture media requiring management 2 1 1

Relative cost High Medium Low

Labor of embryologists High Medium Low

Continuous observation by time lapse from 1 cell to blastocyst Complicated Complicated Simple

Changes in medium composition and culture environment dur-
ing cultivation period

Simple Complicated Complicated
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widely used under the trademark Global (Tables 2 and 3) 
in human ART, and, other single media similar to Global 
have become commercially available [97]. Initially, me-
dium exchange was necessary every 48 h with a single 
medium to eliminate waste produced by embryos and 
degradation products of medium components. However, 
more recently, media that do not require medium ex-
change from the fertilization to the blastocyst stage have 
become available [98].

MEM essential amino acids are not added to cleavage 
media of sequential media because they have deleteri-
ous effects on cleavage-stage embryos [86]. However, 
in studies using KSOM, such negative effects were not 
observed [31]. Furthermore, essential amino acids exist 
in the reproductive tract [92, 99–102], and are thought 
to be involved in imprinting and important reactions 
such as glutathione synthesis [103]; therefore, essential 
amino acids are added to some cleavage media that are 
currently being used [97]. EDTA—considered to have 
deleterious effects on blastocyst development [81] and 
removed from sequential media used for the blastocyst 
stage—does not present issues when used at appropri-
ate concentrations [104]. Currently, about 10 µM of EDTA 
is added to single media.

Comparison of Sequential Media with  
Single Medium

Comparative studies of sequential media and single 
media have been performed globally, but no conclusion 
has yet been reached as to which of the two is better 
[105, 106]. The best approach when selecting an embryo 
culture medium may be to understand the characteristics 
of the two types (Table 4) and choose the one best suited 
to each laboratory.

The advantage of a single medium is that there is no 
need to change the medium composition during the pro-
gression from the cleavage stage to the blastocyst stage, 
as is necessary with sequential media. Because there 
is only a single embryo culture medium that needs to 
be managed, this means reduced labor and costs and 
the avoidance of stresses on embryos that may occur 
when changing medium composition. A single medium, 
which requires no medium change, means that one can 
avoid the changes in pH, temperature, gas phase, and 
exposure to light that occur during the medium change. 
Moreover, the embryo does not lose the autocrine factors 
that it produces. The use of commercially available time-
lapse devices in recent years has enabled continuous, 
seamless observations from the cleavage stage to the 
blastocyst stage. Thus, so long as the accumulation of 

waste and degradation products is tolerable, there are 
many advantages in using a single medium that does not 
require changing. Conversely, when aiming to deliberate-
ly change the medium composition and culture environ-
ment at the cleavage and blastocyst stage, respectively, 
sequential media offer benefits over a single medium. 
For example, the optimum pH of a medium may differ in 
the cleavage and blastocyst stages [107]. With a single 
medium, transfer of the medium to a separate incubator 
having a different CO2 concentration, or change of incu-
bator CO2 concentrations, is needed for pH adjustment. 
However, with sequential media, if the manufacturer has 
prepared the medium so that the bicarbonate concentra-
tion is adjusted to provide the optimum pH at each stage, 
there is no need to change the incubator CO2 concentra-
tion.

Issues with Current Embryo Culture Media

As distinct from somatic cells, mouse and human em-
bryos can be developed from zygote to blastocyst in a 
simple medium composed of inorganic salts and energy 
substrates. In the early period, successful embryo cul-
ture was performed in media without amino acids or vi-
tamins (for example, M16, BWW, and HTF). Later, the 
importance of amino acids was recognized, and they 
were added to embryo culture media (Table 2). Vitamins 
and/or growth factors and hormones are added to some 
embryo culture media, but we currently have insufficient 
knowledge of the appropriate concentrations and com-
binations of these substances or of the best time to add 
them to a culture. There are also cases where there is 
a variety of impurities in the medium in in vitro environ-
ments despite the best efforts of embryologists. Thus, 
impurity control is another key issue.

Amino acids and vitamins
Amino acids have a wide range of functions. They act 

as energy sources, precursors of biosynthesis, intracel-
lular pH buffers, osmolytes, chelators, and antioxidants 
[108]. Adding amino acids to embryo culture media is 
generally known to improve embryo viability and en-
hance blastocyst formation rates [27, 108, 109]. Vitamins 
generally serve as precursors to coenzymes and are 
involved in carbohydrate, lipid, and amino acid metab-
olism, but these effects on embryo culture are unclear. 
O’Neill [110] reported that folate is necessary for the de-
velopment of embryos from the zygote to the blastocyst 
stage, but folate is provided from the intracellular stock 
of the embryo itself and adding folate to a medium has 
been found to have no effect. The effects of inositol, nia-
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cin, and vitamin B6 differ depending on the animal spe-
cies [111–113], and as well as certain positive effects, 
their deleterious effects have also been demonstrated 
[111, 112]. Furthermore, the effects of vitamins within hu-
man embryo culture are still largely unknown [114], and 
some vitamins are unstable, making them difficult to use 
[115–117], meaning there are many examples of embryo 
culture media without vitamins.

The combinations and concentrations of amino acids 
and vitamins used for embryo culture media are, in most 
cases, based on the results of somatic cell experiments 
presented by Eagle in the 1950s [87, 118]. Eagle used 
human-derived HeLa cells and mouse-derived L cells to 
study the minimum substance requirements of somatic 
cells. He found that 13 amino acids and 8 vitamins were 
required, and developed MEM. The amino acids and vi-
tamins included in this medium are called “MEM essen-
tial amino acids” and “MEM essential vitamins.” These 
are packaged in the form of an easy-to-use concentrated 
solution and have been widely used to assess the effects 
of amino acids and vitamins on embryos [82]. Thus, the 
combinations and concentrations of amino acids used in 
current sequential and single media are, in most cases, 
based on MEM [97] (Table 3), yet they have never been 
optimized for embryos.

Optimizing 20 amino acid concentrations within an em-
bryo culture medium using a statistical approach would 
require the use of huge numbers of embryos [27], which 
is not realistic. Specific amino acids such as glycine, ala-
nine, glutamate, and taurine are found at higher concen-
trations in the oviduct fluid and uterine fluid of mice [101], 
rabbit [100], bovine [92], sheep [102], and pig species 
[99] than in serum. These higher concentrations have 
been reported to promote embryo development better 
than the amino acid concentrations set for somatic cells 
[119, 120]. In the future, media may be developed based 
on the amino acid concentrations from studies of human 
oviduct fluid and uterine fluid collected in their physiologi-
cal state.

Growth factors and hormones
Growth factors and hormones are extremely impor-

tant in the control of cell division, cell growth, and cell 
differentiation. In the case of somatic cells, the key to a 
successful cell culture without serum is based on setting 
growth factors and hormones in optimal combinations 
and concentrations [121, 122]. By contrast, most embryo 
culture media do not include these substances because 
embryos can develop to the blastocyst stage without 
any growth factors or hormones in vitro. While it is not 
clear to what extent the absence of growth factors and 

hormones negatively impacts cultured embryos, several 
deleterious effects have been indicated in comparison 
with embryos derived in vivo, including lower develop-
ment rates, slower growth (bovine [123, 124] and hamster 
[125]), decrease in blastocyst cell numbers (mouse [126–
129], pig [95, 130], and rat [131]), higher oxidation stress 
(mouse [132, 133]), metabolic changes (mouse [72, 134, 
135] and rabbit [136]), changes in gene and protein ex-
pression (mouse [129, 137–140], bovine [141–143], and 
sheep [144]), changes in intracellular structure and in-
creased lipid droplets (bovine [145–147]), decline in suc-
cessful implantation and pregnancy rates (rat [131]), and 
changes in birth weights (human [148]). The absence of 
growth factors and hormones may account for some of 
these differences.

Within the female reproductive tract, an embryo devel-
ops interactions with the mother’s body. This “embryo–
mother communication” involves growth factors and their 
receptors [149, 150] (Table 5). For example, in the human 
reproductive tract, including the oviducts and uterus, 
various growth factors are expressed, such as epidermal 
growth factor (EGF) [151], granulocyte-macrophage col-
ony stimulating factor (GM-CSF) [152], heparin-binding 
epidermal growth factor (HB-EGF) [153–155], insulin-like 
growth factor (IGF)-1 [156–160], and leukemia inhibito-
ry factor (LIF) [161–165]. Human oocytes and embryos 
express receptors for these growth factors on their cell 
surfaces [158, 166–172]. Various positive effects have 
been reported resulting from the addition of such growth 
factors to human embryo culture media, including accel-
erated developmental speed, improved blastocyst for-
mation rates, and increased numbers of blastocyst cells 
[159, 173–178].

In human ART, it has currently become common to use 
a medium supplemented with insulin or GM-CSF. In the 
mother’s body, growth factors and hormones do not sim-
ply work alone; complex combinations of multiple growth 
factors and hormones affect an embryo at different devel-
opment stages. Additionally, minute amounts of growth 
factors can have large impacts on cell growth and dif-
ferentiation. Therefore, their concentrations must be set 
with careful consideration. Hopefully, more detailed stud-
ies will be performed to establish the optimal concentra-
tions and combinations of growth factors and hormones, 
and the results will be reflected in media compositions. 
Following recent progress in analysis technologies [179], 
it may become possible to perform exhaustive analyses 
of physiological growth factors and hormones in the re-
productive tract.
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Embryo culture medium contamination
While mouse and human embryos can develop into 

blastocysts in a protein-free medium [37, 180], the ad-
dition of HSA and other biogenic macromolecules is 
thought to improve blastocyst formation rates, hatching 
rates, blastocyst cell numbers, and implantation rates 
[181–184]. Thus, almost all human embryo culture media 
are supplemented with HSA or a serum substitute (HSA 
including α- and β-globulin) [185, 186].

HSA is the most abundant protein in the blood, ac-
counting for 50%–70% of all serum proteins, and it binds 
with and transports a variety of molecules. For example, 
because long-chain fatty acids—reported to be used as 
an energy source and for the biosynthesis of lipids in 
an embryo [181, 187, 188]—have low aqueous solubility 
(typically <1 µM), most are bound to HSA and transported 
within the blood [189]. Many other materials are bound to 
HSA and transported, including endogenous substances 
such as transition metals, amino acids, vitamins, and 
hormones, and exogenous compounds such as drugs 
and dyes [190]. In addition to these materials that bind to 
HSA, the commonly used HSA fraction V undergoes only 
partial purification using an ethanol fractionation proce-
dure called Cohn’s method, and thus includes a variety 
of serum-derived contaminants (impurities) [191]. For ex-

ample, HSA contains at least 100 types of proteins (frag-
ments) [192], of which some have been reported to have 
positive effects on an embryo, including growth factors 
and hormones such as vascular endothelial growth fac-
tor, IGF-2, and insulin [193]. Meanwhile, HSA may also 
contain substances that have negative effects on animal 
tissues such as endotoxins [194] and phthalates [195]. 
The problem is that there is no control of the types and 
concentrations of such albumin-binding substances and 
contaminants except endotoxins, with major variations 
among various product manufacturers and even among 
batches produced (fatty acids (Table 6), growth factors 
and hormones [193], endotoxins [194], and phthalate 
[195]). Thus, current embryo culture media cannot be 
considered as chemically defined media (Table 1), al-
though they are serum-free media, and one can obtain 
scattered results from supplemented albumin [196–201]. 
A recent report suggested that depending on the HSA lot, 
the phenotype of the offspring may change [202]. Fur-
thermore, although adequate viral testing is performed, 
one cannot exclude the possibility that unknown viruses 
may be present [203]. To increase the safety of ART and 
to obtain stable results, chemically defined media free 
of HSA or serum substitutes must be developed. To ac-
complish this, researchers must determine why HSA acts 

Table 5.	 Growth factors expressed within the human female reproductive tract and at the oocyte/embryo surface, and their effects 
on human embryos

Expression of the growth factor within  
the human reproductive tract

Expression of the receptor by  
human oocytes/embryos

Supplementation of the human embryo 
culture media with growth factor

Fol-
licular 
fluid

Cu-
mulus/
granu-

losa 
cells

Ovi-
duct

Endo-
me-

trium
Ref. Oocyte

2–4-
cell 

stage

6–8-
cell 

stage

Blasto-
cyst Ref. Beneficial effects Ref.

EGF ○ [151] ○ ○ ○ ○ [158, 166] Increased plasminogen 
activator activity

[174]

GM-CSF ○ ○ [152] ○ ○ ○ [171] Increased developmen-
tal speed and number of 
blastocyst cells, improved 
blastocyst formation and 
hatching rates

[176]

HB-EGF ○ ○ [153–155] ○ ○ ○ ○ [169, 170] Improved blastocyst for-
mation and hatching rates

[175]

IGF-1 ○ ○ ○ [156–160] ○ ○ ○ ○ [158, 168] Improved blastocyst 
formation rates, increased 
number of ICM cells, 
decreased apoptosis of 
blastocysts

[159, 178]

LIF ○ ○ ○ [161–165] ○ ○ ○ ○ [167, 172] Improved blastocyst for-
mation rates

[173, 177]
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effectively on embryo development.
Potential risks remain for various medium contami-

nants, other than albumin, in culture environments, in-
cluding toxic substances leached from filters used for 
sterilization, mineral oil [204–206], degradation products 
of components of the medium [207], and ROS generated 
by light irradiation [56, 208, 209]. To stably obtain high 
quality blastocysts in vitro, establishing chemically de-
fined media will not be sufficient, as researchers will also 
need to strive to optimize the culture system as a whole. 
This will include establishing strict quality assessment 
methods for filters, mineral oil, and products that come 
into contact with embryo culture media, detailed investi-
gations of the optimal numbers of embryos in the culture 
and the timing of medium exchanges, and the develop-
ment of novel culture platforms [210].

Conclusions

Compared with the earliest days of human ART, there 
have been vast improvements in blastocyst formation 
and pregnancy rates [211, 212], and culture environ-
ments have generally reached a satisfactory level. How-
ever, differences in embryo culture media used in human 
ART result in differing offspring body weights [148], and 
it has been suggested that extended culture times for hu-
man embryos are associated with premature births and 
congenital anomalies [213]. Thus, it is wise to accept that 
culture environments remain suboptimal.

The embryo culture media that are currently used have 
not been optimized in terms of amino acid concentrations 
suited to the demands of an embryo, and the significance 

of adding vitamins remains unclear. Clinical use of hu-
man embryo culture media supplemented with growth 
factors and hormones is in its infancy. In the future, the 
types and concentrations of components to be added to 
the medium and their different combinations should be 
investigated. While only a limited number of embryos can 
be used for research, the number of possible medium 
composition types and combinations is nearly infinite. 
Thus, haphazard studies are unlikely to lead to the de-
velopment of optimal media. It will be necessary to first 
establish methods of quantitative assessment that can 
clearly differentiate between normal and abnormal em-
bryos (for example, using live-cell imaging technologies 
[214]). In addition, the accuracy of the “back to nature” 
and “let the embryo choose” approaches must increase. 
Combining these approaches will be efficacious for as-
sessing which medium compositions are optimal for em-
bryos.

Human ART has shown remarkable progress, and is 
now widespread. Globally, over one million cycles are 
performed in treatments every year [215]. Even a slight 
improvement in results would bring immense benefits. 
Therefore, progress must be made in studies aiming to 
establish optimal culture environments.
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