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Abstract: Assisted reproductive technologies (ARTs) 
in mice were recently advanced when two long-existing 
technical barriers were overcome. The first barrier was 
the limited number of mature oocytes after conventional 
superovulation, especially in inbred strains of mice. A 
combination of estrous cycle synchronization and anti-
inhibin serum treatments increased the number of col-
lected oocytes from female mice by approximately 3–4 
times in many strains. The second barrier was the low 
fertilization rate after in vitro fertilization (IVF) using fro-
zen-thawed spermatozoa. The addition of reduced gluta-
thione in the fertilization medium dramatically increased 
the IVF yields, even in cryopreserved/warmed sper-
matozoa from the C57BL/6J strain, which is one of the 
strains most sensitive to cryoinjury. This result encour-
aged the use of cryopreserved spermatozoa in mouse 
strains worldwide for the preservation and transportation 
of their genetic characteristics. The final yield to produce 
offspring from one female was increased from 9 to 30. In 
IVF with cryopreserved spermatozoa from the C57BL/6J 
strain, the final yield using these technological innova-
tions was estimated to be ninefold higher than previous-
ly. Following this improvement, the efficiency of ARTs in 
mice was increased dramatically and the decrease in the 
number of euthanized animals contributes to animal wel-
fare and reduces labor and expense.
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Introduction

The laboratory mouse is one of the most important 
species for biomedical research. Because of their de-
fined genetic background and relatively easier genetic 
modifications, including transgenesis, gene targeting, 
and gene editing, many kinds of mouse strain have been 

developed as models for human diseases and functional 
analysis of mouse genes. These mouse strains have been 
collected and preserved at repository facilities worldwide 
and are distributed to researchers upon request [1–6]. All 
of these processes and assisted reproductive technolo-
gies (ARTs) are used in popular background strains of 
mice, especially the C57BL/6 strain.

ARTs using mice are thought to be well developed, 
but there are still several problems to resolve. On the 
one hand, the results of ARTs in mice have shown that 
the efficiency of ARTs highly depends on the mouse’s 
genetic background in the number of ovulated oocytes 
[7–10], fertility rates [7, 9, 11, 12], survivability of frozen/
recovered embryos, and developmental rates to term af-
ter embryo transfer [9, 13–16]. On the other hand, these 
various data show the sensitivities of each strain to vari-
ous agents and conditions, such as exogenous gonado-
tropin, in vitro environmental agents, and the handling of 
oocytes and embryos outside the incubator. By optimiz-
ing each technology, the differences in results between 
mouse strains will be reduced. In particular, wild-derived 
mouse strains were thought to be ARTs-resistant for a 
long time [17] until the technologies were improved by 
Hasegawa et al. [18] and subsequent research [16]. Two 
kinds of innovative technologies were used in these stud-
ies: the first was the improvement of the superovula-
tion method, by increasing the secretion of endogenous 
follicle-stimulating hormone (FSH) by anti-inhibin serum 
(AIS) injection; and the second was to use two media for 
IVF, which include the reduced glutathione (GSH) and 
methyl-β-cyclodextrin (MBCD), which are known to be 
effective for the preincubation of oocytes and sperma-
tozoa, respectively. These innovations widely expanded 
the range of efficient strains of mice and promoted the 
use of cryopreserved spermatozoa. Thus, the effective 
technologies for most strains are innovatively progres-
sive with less strain specificity. This review introduces 
the ARTs developed in recent years that are effective 
across strain differences.
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Superovulation

Superovulation with anti-inhibin serum
The number of collected oocytes from females is an 

important factor to determine the final yield of the re-
productive experiment. For example, if 40 oocytes per 
female are obtained, the total yield increases twofold 
compared to 20 oocytes. In the standard superovulation 
method, the injection of equine chorionic gonadotropin 
(eCG) is used to stimulate follicular development in most 
rodents, not only in mice [19–21]. About 48 h later, hu-
man chorionic gonadotropin (hCG) is injected to stimu-
late an exogenous luteinizing hormone surge to induce 
ovulation. Matured MII oocytes are then ovulated around 
12–14 h later. Many facilities have reported the number 
of ovulated oocytes as a value of strain specificity [7–
10]. In addition, the number of oocytes is also affected 
by the age [10, 19, 22–25] and estrous stages of treated 
females [26–30]. It is probable that exogenous eCG pre-
pared from pregnant mares is not always effective at ob-
taining the maximum number of oocytes in some strains 
and cases of mice.

In 1997, a group led by Taya and Watanabe succeeded 
in inducing superovulation using another strategy: the 
injection of AIS in various species of laboratory and do-
mestic animals, such as golden hamsters [31], cows [32], 
horses [33], guinea pigs [34], mice [27], rats [29], and 
goats [35]. They produced an inhibin α-subunit antiserum 
from castrated goats immunized against [Tyr30]-inhibin 
α (1–30) conjugated to rabbit serum albumin. Inhibin se-
creted from granulosa cells in developing follicles induc-
es a negative feedback action that acts on the anterior 

pituitary gland and limits the secretion of FSH (Fig. 1). 
This mechanism regulates the number of ovulated oo-
cytes characteristic to each species and strain/breed of 
animals. By injection of AIS, the secretion of endogenous 
FSH continues over their usual limit and much larger 
numbers of ovulated oocytes can be expected without 
exogenous eCG injections. Wang et al. collected 73.0 
ovulated oocytes from one adult (3-month-old) female 
mouse of ddY strain after treatment by AIS injections on 
day 1 of diestrus, followed by an injection of hCG 48 h 
later, and mating with a fertile male, compared to 41.6 oo-
cytes collected after eCG injections instead of AIS [27]. 
Furthermore, the highest number of oocytes that they 
collected was 102.8 by AIS–hCG injections and mating 
at 26 days old.

Application to wild-derived mouse strains
Wild-captured (derived) mouse strains were newly 

introduced as a genetic resource with the expectation 
that they would demonstrate some disease-resistant 
or disease-prone characteristics in their unlimited poly-
morphisms as opposed to the limited genetic diversity of 
classical laboratory mice, which were derived from a rel-
atively small pool of mice [36–39]. However, these wild-
derived mice were thought to be ARTs-resistant for a long 
time [17]. In 2012, we succeeded in collecting about 25 
oocytes from both the MSM and JF1 strains belonging to 
Mus musculus molossinus using AIS–hCG injections, a 
fivefold increase over the standard superovulation meth-
od of eCG-hCG injections [18]. We also succeeded in the 
cryopreservation of embryos of 37 strains, including the 
MSM and JF1 strains that comprise five subspecies of 

Fig. 1. Schema of mechanisms for developing follicles using endogenous or exogenous follicle-stimulating hor-
mone (FSH). The number of oocytes in natural ovulation is controlled by the negative feedback action of 
inhibin secretion from granulosa cells (A). In a popular superovulation treatment, the number of oocytes 
increased by exogenous injection of eCG (B). By injection of anti-inhibin serum (AIS), endogenous 
inhibin secretion is neutralized and endogenous FSH secretion is maintained at high levels from the 
pituitary gland, inducing much larger number of developing follicles (C).
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Mus musculus, which were obtained with optimized su-
perovulation and in vitro fertilization (IVF) methods. The 
viability of the embryos was confirmed by their develop-
ment to offspring using a combination of improved and 
standard embryo-transfer methods [16]. Following these 
results, successful superovulation led to the successful 
preservation of rare wild-derived mouse strains.

Influence of estrous cycle and synchronization
The results of superovulation in mouse and rat may be 

affected by their strain [7–10, 14], age [10, 19, 22–25], and 
estrous stages [26–30]. Therefore, we investigated the 
relationships between the estrous cycle and the results 
of superovulation induced by eCG–hCG or AIS–hCG 
injections (Fig. 2) [40]. Significant differences were not 

found in the eCG–hCG injection group (11–30 oocytes 
at each stage), but the highest number of oocytes was 
obtained at the metestrus stage in the AIS–hCG injection 
group (16–59 oocytes). Therefore, we considered con-
trolling the estrous cycle by using progesterone (P4) in-
jections, as in guinea pigs and domestic animals [41–43]. 
In these animals with a complete estrous cycle, a silicon 
tube filled with P4 was embedded subcutaneously or into 
the vagina to maintain the luteal phase. After removing 
this tube, superovulation was induced by several simulta-
neous hormone treatments. The mouse is a species with 
an incomplete estrous cycle; therefore, different methods 
for estrous synchronization might be needed. However, 
sequential P4 injections in the evenings on days 1 and 2 
were found to result in the synchronization of most of the 
mice (93%) at the metestrus stage [40] as determined by 
their vaginal cytology [44].

Novel superovulation protocol
We succeeded in collecting 59 morphologically normal 

oocytes (approximately 3.5-fold) from one inbred female 
of C57BL/6J strain using a novel superovulation protocol 
combining estrous cycle synchronization and two AIS in-
jections (2P4–2AIS–hCG). This was approximately 3.5 
times the number of 17 normal oocytes obtained by the 
standard eCG–hCG injection method (Table 1) [40]. We 
obtained more than 75 normal oocytes from 43% of the 
treated females. We considered that the reason for this 
high production of oocytes by two daily AIS injections 
may be the continuously high level of FSH for 3 days, 
which might rescue follicles that would otherwise undergo 
spontaneous apoptotic degeneration [45]. We confirmed 
that this protocol was effective for several other mouse 
strains at 10–20 weeks of age using BALB/cA (13 and 
55 oocytes by the standard and novel methods, respec-
tively) as the inbred strain, ICR (27 and 70 oocytes) as 
the outbred strain, and B6D2F1 (23 and 78 oocytes) as 

Fig. 2. Results of superovulation induced by eCG or AIS injec-
tion at each estrous stage [40]. The number of normal 
oocytes per female are expressed as the mean ±SEM 
(n=6–7). There was a significant difference between 
eCG (white bar) and AIS (gray bar) injections at the 
metestrus stage according to post hoc multiple compari-
sons using the Tukey-Kramer procedure (a, p<0.01).

Table 1. Superovulation and IVF rates induced by various treatments in the C57BL/6J strain [40]

Experimental group / Day of injection No. of 
females

Mean number of oocytes (±SE) Fertilization 
rate (%)1 2 3 4 5 6 Total Normal Abnormal

eCG hCG 29 21 ± 2 17 ± 2 5 ± 1 95.3 ± 1.1
P4 P4 eCG hCG 15 23 ± 3 18 ± 2 5 ± 1 97.0 ± 2.1

AIS hCG 25 41 ± 5a 40 ± 5 1 ± 0 87.3 ± 5.8
P4 P4 AIS hCG 21 50 ± 5 49 ± 5 1 ± 0 84.2 ± 4.2
P4 P4 AIS AIS hCG 23 62 ± 5b 59 ± 5 3 ± 1 85.2 ± 4.0

*: Two-way ANOVA was performed to analyze the mean numbers of oocytes within the top four rows: total 
number of oocytes, eCG <AIS. **: Post hoc multiple comparisons using the Turkey-Kramer procedure was 
performed to analyze the mean numbers of oocytes for three AIS groups (a-b: p<0.05).
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the hybrid strain [40]. Even for aged C57BL/6N females, 
about twice as many normal oocytes were collected by 
AIS treatment at both 46 weeks (5 and 13 oocytes) and 
62–63 weeks (5 and 10 oocytes) of age.

Ultrasuperovulation method in immature mice
In 1961, Zarrow and Wilson reported the results of su-

perovulation induced by eCG in immature female mice 
[19]. The highest number (approximately 60) of ovulated 
oocytes was more clearly shown in 24- and 26-day-old 
Swiss mice than at other ages. The timing of the peak 
oocyte number depends on the puberty of each strain, 
which is peculiar to each strain and is based on their body 
weight. As noted above, Wang et al. collected 102.8 oo-
cytes from one female using by AIS–hCG injections and 
mating at 26 days old in ddY mice maintained in a closed 
colony [27]. Recently, Takeo and Nakagata succeeded 
in obtaining 107.2 ovulated oocytes (approximately four-
times more than by eCG–hCG treatments) from 4-week-
old inbred C57BL/6 mice using simultaneous injections 
of both AIS (indicated as IAS in their paper) and eCG 
followed by hCG 48 h later [46]. They showed that oo-
cytes collected from various mouse strains were capable 
of fertilization in vitro and development to term [47]. Sev-
eral reports have mentioned the low developmental abil-
ity to term of oocytes collected from immature females 
at around 3 weeks old due to cytoplasmic and nucleic 
abnormalities [48–50]. It may be necessary to confirm 
the normal development to offspring when oocytes from 
females younger than 4 weeks old are used.

In Vitro fertilization

Preincubation medium for oocytes before insemination
In 2010, Bath reported excellent results, achieving in 

vitro fertilization of 89% of oocytes with cryopreserved 
C57BL/6J sperm in a fertilization medium supplemented 
by GSH [51]. Bath improved the fertilization rates with 
cryopreserved sperm in four popular strains: from 7% to 
89% in C57BL/6J, from 14% to 69% in 129S1, from 50% 
to 86% in FVB/NJ, and from 73% to 98% in C3H/HeJ. 
This was an important result, because the C57BL/6J 
stain is very often used to produce gene-modified strains 
which are known to have low fertilization rates with cryo-
preserved sperm due to cell damage during cooling [52]. 
GSH is reported to protect cells [53] and the motility and 
DNA integrity of human sperm [54] against the toxic ef-
fects of oxidative damage. GSH is especially thought to 
promote the reduction of the disulfide bonds in the struc-
ture of zona pellucida. Shortly after Bath’s breakthrough, 
improved IVF protocols using cryopreserved sperm were 

reported by some facilities. We also developed a new, 
simpler IVF protocol with GSH and increased the fertil-
ization rates from 34.0% to 75.0% using cryopreserved 
C57BL/6J sperm [55]. IVF protocols using cryopreserved 
sperm have also been established which involve supple-
mentation of GSH to the fertilization medium and MBCD 
to the sperm preincubation medium [16, 56–59].

Preincubation medium for sperm
Over the years, researchers have considered using re-

agents to promote the capacitation of mouse sperm be-
fore fertilization. In particular, the loss of cholesterol from 
the surface membrane of sperm is an important process 
in establishing the in vitro conditions for capacitation 
[60]. The efflux of cholesterol from cultured cells was re-
ported to be stimulated by the addition of cyclodextrins to 
the medium [61], and in 1998, Choi and Toyoda showed 
that MBCD enhanced the capacitation of mouse sperm 
by stimulating cholesterol efflux from plasma membrane. 
These treated sperm increased the fertility rate after co-
culture with cumulus-free mouse oocytes [62]. Several 
months later, Visconti et al. demonstrated that the capac-
itation of mouse and bovine sperm was associated with 
an increase in protein tyrosine phosphorylation, which 
was induced by the addition of β-cyclodextrin instead 
of bovine serum albumin (BSA) to the medium, and this 
resulted in the induction of the acrosome reaction and 
successful fertilization [63]. In 2008, Takeo et al. found 
that MBCD supplementation of the sperm preincuba-
tion medium was effective at capacitating cryopreserved 
C57BL/6J sperm [64], as the fertilization rate increased 
to 67% compared to 19% in a control group supplement-
ed with BSA.

Increased transportation of cryopreserved sperm
The discovery of efficiencies gained by the addition 

of the reagents, GSH and MBCD, to the preincubation 
media has dramatically changed the results of IVF using 
cryopreserved sperm in the mouse (Fig. 3). We have also 
reported that the optimization of IVF conditions, including 
using a microdroplet system and preincubation supple-
mented with GSH and MBCD in media, which resulted 
in oocytes being fertilized by only five cryopreserved 
sperm [65]. This study showed that the optimization of 
the relationships between sperm motility, volume of fer-
tilization medium, and the number of oocytes in a drop 
is important for the production of fertilized oocytes. The 
IVF protocols using cryopreserved mouse sperm have 
spread widely and they have become popular techniques 
in workshops at each repository facility, e.g. Kumamoto 
University, Jackson Laboratory, and RIKEN BRC. Cryo-
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preserved sperm is now being transported between fa-
cilities more often than before, via mouse repository cen-
ters such as our center. Our center has cryopreserved 
sperm from more than 3,700 strains, and in 2015, about 
200 strains were transported to researchers as sperm 
or pups recovered from these sperm. These innovations 
in ARTs have increased the number of occasions when 
frozen sperm has been used for preservation and trans-
portation over recent years.

Final Yield of pups Using Innovative ARTs

Effective production of pups
It is important to calculate the number of pups from 

one female as the total yield by ART. In the literature, the 
total yield of each strain has been expressed using mul-
tiple factors, including the number of normal oocytes col-
lected from one female after superovulation treatment, 
fertilization rate in vitro with fresh sperm, survival rate 
of embryos after cryopreservation, and developmental 
rate to term after embryo transfer into oviducts of pseu-
dopregnant females [16]. For example, 9–12 pups were 
produced by one female in the popular C57BL/6J strain 
(Table 2) [9, 16, 46, 66, 67]. After using AIS as a super-
ovulation reagent, the final yield numbers have dramati-
cally changed to 30 pups at BRC and to 42 pups by esti-
mation at CARD. If the ARTs efficiencies were increased 
by 3–4-fold, each facility would be able to reduce the 
number of animals euthanized by one third or one fourth.

In addition, when the final yield is estimated using the 
fertilization rate in vitro using cryopreserved sperm from 
the C57BL/6J strain, the efficiency has increased nine-
fold compared to the numbers obtained without these 
technological innovations (17 × 30% × 57.5% = 3 vs. 59 
× 75% × 60% = 27).

Future issues regarding reproductive technologies
Following these technical developments, the rates of 

fertilization in vitro, survival after embryo cryopreserva-
tion, and development into blastocysts in culture have 
been refined by up to 80–90%. However, the develop-
mental rates into offspring after embryo transfer are 
still 40–70% of the number of transferred embryos. In 
other words, 30–60% of the produced embryos do not 
survive and fail to develop to term in the oviducts and 

Fig. 3. Effects of preincubation media on the rates of fertiliza-
tion in vitro using fresh and frozen C57BL/6J sperm. 
The fertilization rates are expressed as the mean ±SEM 
(n=5) for each group of fresh (white bar) and frozen 
(gray bar) sperm. The results were improved by the ad-
dition of GSH to HTF as a fertilization medium, and 
by the addition of MBCD instead of BSA as a sperm 
preincubation medium in the frozen sperm group. There 
were significant differences in each group according to 
the Tukey-Kramer test (a-b, a-c, b-c, p<0.05).

Table 2. Total yields of offspring produced by one female of the C57BL/6J strain via ARTs at various repository facilities

Facility abbreviation* 
[Reference no.]

Age of females 
(weeks)

Superovulation 
method

Nomal oocytes  
per female IVF (%) ET (%) Total yield  

per female

NIRS [66] 8–12 eCG 18.8 91.1 52.0 8.9
JAX [9] 3–4 eCG 25.0 66.3 53.1 8.8
CIE [67] 8–16 eCG 20.0 83.2 60.0 10.0
CARD [46] 4 eCG 27.7 96.4 43.6 11.6

4 IASe** 107.2 89.8 NT 42.0***
RBRC [16, 40] 10–20 eCG 17.0 95.3 57.5 9.3

10–20 AIS**** 59.0 85.2 60 30.2

* NIRS: National Institute of Radiological Sciences; JAX: The Jackson Laboratory; CIEA: Central Institute for Experimen-
tal Animals; CARD: Center for Animal Resources and Development; RBRC: RIKEN BioResouce Center. ** Mixture of 
inhibin anti-serum and eCG. *** Total yield was provisionally calculated using the rates of embryo transfer after eCG treat-
ment. **** 2P4 (estrous cycle synchronization) and two shots of anti-inhibin serum. NT: not tested.
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uteri of pseudopregnant females. This problem seems 
to be common in other species, including humans and 
domestic animals. Embryo qualities have been analyzed 
for, chromosome abnormalities [25, 68–70], epigenetic 
modification [48, 71–73], and gene expression [74, 75]. In 
addition, the establishment of criteria for the assessment 
and quality of the management system [76] for each spe-
cies will be important in the near future.

Conclusion

In recent years, innovations in ARTs using mice have 
progressively increased the productive yield of embryos 
from one female, such as from 9 to 30 (more than three-
fold) in the C57BL/6J mouse strain by using AIS in the 
superovulation method. In addition, the protocols for IVF 
with cryopreserved sperm have been refined at each fa-
cility and the use of cryopreserved sperm for the trans-
portation of mouse strains has increased in recent years. 
The final yield for producing offspring with cryopreserved 
sperm has increased from 3 to 27 per female, a ninefold 
increase over that of before. Thus, the developments of 
ARTs has made it possible to decrease the number of 
animals used in life science studies.
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